MATH 7: HANDOUT 11 POKER PROBABILITIES

POKER PROBABILITIES

In the game of poker, a player is dealt five cards from a regular deck with 4 suits (\blacklozenge , \clubsuit , \diamondsuit , \heartsuit) with card values in the following order: A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A. We calculated probabilities of the following combinations:

Royal Flush: 10, J, Q, K, A of any suit (Example: $10\heartsuit$, J \heartsuit , Q \heartsuit , K \heartsuit , A \heartsuit)

There are only 4 of them.

Straight Flush: Five cards in a row of the same suit (Example: $6\heartsuit$, $7\heartsuit$, $8\heartsuit$, $9\heartsuit$, $10\heartsuit$)

Each of these can start from any card from A to 9, and be in each of the for suits: $9 \times 4 = 36$. Notice that we excluded royal flushes from out computation (if we start with 10, we get a Royal Flush).

Four of a kind: Four cards of the same value, and one other random card (Example: K \heartsuit , K \diamondsuit , K \diamondsuit , K \diamondsuit , 2 \clubsuit) Which card 13× Which other value 12× Which other suit $4 = 13 \cdot 12 \cdot 4$.

Full House: Three cards of the same value, and two cards of the same value (Example: K \heartsuit , K \diamondsuit , K \diamondsuit , K \diamondsuit , 4 \clubsuit , 4 \clubsuit) Which card for 3 13× Which three suits $\binom{4}{3}$ × Which card for a pair 12× Which two suits $\binom{4}{2} = 13\binom{4}{3} \cdot 12\binom{4}{2}$.

Flush: Five cards of the same suit, not in order (Example: $3\heartsuit$, $6\heartsuit$, $8\heartsuit$, $J\heartsuit$, $A\heartsuit$) Which suit $4\times$ Which five cards $\binom{13}{5} = 4\binom{13}{5}$. We also need to exclude Royal Flushes and Straight Flushes, so the total is $4\binom{13}{5} - 40$.

Straight: Five cards in order, possibly of different suits (Example: $5\heartsuit$, $6\spadesuit$, $7\diamondsuit$, $8\spadesuit$, $9\clubsuit$)

Which card to start from (anything from A to 10) $10 \times$ Five suits $4^5 = 10 \cdot 4^5$. From here we also need to exclude Royal Flushes and Straight Flushes, so the final answer if $10 \cdot 4^5 - 40$.

Triple: Three cards of the same value, and two other random cards (Example: K \heartsuit , K \diamondsuit , K \diamondsuit , 4 \bigstar , 2 \clubsuit) Which card $\binom{13}{1} \times$ Which three suits $\binom{4}{3} \times$ Which two other values $\binom{12}{2} \times$ Which two suits for these two random card $4^2 = \binom{13}{1}\binom{4}{3}\binom{12}{2}4^2$.

Two pairs: Two cards of the same value, two cards of the same value, and a random card (Example: $K\heartsuit$, $K\blacklozenge$, $10\diamondsuit$, $10\diamondsuit$, $4\clubsuit$)

Pair: Two cards of the same value, and three other random cards (Example: $K\heartsuit$, $K\blacklozenge$, $Q\diamondsuit$, $4\diamondsuit$, $2\clubsuit$)

To calculate probabilities of each of these combinations, we have to divide the counts above by the total number of poker hands, which is $\binom{52}{5}$. The table below gives the probabilities and odds:

Combination	Count	Probability	Odds
Royal Flush	4	0.000154%	1:649,740
Straight Flush	36	0.00139%	1:72,192
Four of a Kind	$13 \cdot 12 \cdot 4$	0.024%	1:4,165
Full House	$13\binom{4}{3} \cdot 12\binom{4}{2}$	0.1441%	1:693
Flush	$4\binom{13}{5} - 40$	0.1965%	1:508
Straight	$10\cdot 4^5-40$	0.3925%	1:254
Triple	$\binom{13}{1}\binom{4}{3}\binom{12}{2}4^2$	2.1128%	1:46.3
Two Pairs			
Pair			
Nothing			

Homework

1. There is only one problem in this homework.

Note that we did not calculate the probabilities of two poker combinations, **Two Pairs** and **Pair**. Please study this handout in detail and use the same logic as for other combinations to find the probabilities of these combinations. Then fill out the line for **Nothing** – probability that there is a poker hand with nothing interesting in it.