HW is Due Oct 6th

Basic algebraic identities for refreshing your memory:

Exponents Laws

If *a* and *b* are real numbers and *n* is a positive integer

$$(ab)^{n} = a^{n}b^{n} \quad (eq. 1)$$

$$\sqrt{ab} = \sqrt{a}\sqrt{b} \quad (eq. 2)$$

$$(a + b)^{2} = a^{2} + 2ab + b^{2} \quad (eq. 3)$$

$$(a - b)^{2} = a^{2} - 2ab + b^{2} \quad (eq. 4)$$

And also:
$$a^2 - b^2 = (a - b)(a + b)$$
 (eq. 5)

And:

$$a^{3} + b^{3} = (a + b) (a^{2} - ab + b^{2})$$

 $a^{3} - b^{3} = (a - b) (a^{2} + ab + b^{2})$

Homework problems

Instructions: Please always write solutions on a *separate sheet of paper*. Solutions should include explanations. I want to see more than just an answer: I also want to see how you arrived at this answer, and some justification why this is indeed the answer. So **please include sufficient explanations**, which should be clearly written so that I can read them and follow your arguments.

1. Using algebraic identities calculate

- a. $299^2 + 598 + 1$ d. $16^3 15^3$
- b. 199² e. 57³ 56³
- c. $51^2 102 + 1$
- 2. Expand
 - a. $(4a b + c)^2 =$
 - b. (a+9)(a-9) =
 - c. $(3a 2b)^2 =$
- 3. Factorize (i.e., write as a product) the following expressions:
 - a. $p^2 2pq + q^2$
 - b. $9x^{2a} 12x^{a} + 4$
 - c. $x(z-a)^2 y(a-z)$
 - d. $x^3 + x^2 + x + 1$
 - e. $(a+b+c)^2 + ax + bx + cx$
 - f. 1-y²
 - g. $x^4 y^4$
 - h. $m^2 9p^2q^2$
 - i. a⁴ -169b⁴
 - j. $(x+y)^2 (x-y)^2$
 - k. a² + 3a +2
 - 1. $x^2 + 5x + 4$
 - m. x² x -12
 - n. x² -x -2
 - 0. $(2x y)^{n+1} (2x y)^n$