MATH 5e: Class Work 11

Topics: More on powers. Arithmetic operations

• Powers notation

General notation (*n* is a whole number):

 $a^n = a \times a \times a \times ... \times a$ (*n* times). *a is called the base*, and *n* - *the exponent*

Special cases:

 $a^{\overline{0}} = 1$ read: *a*-to-the-zero $a^{1} = a$ is just itself '*a*' $a^{2} = a \times a$ read: *a*-squared $a^{3} = a \times a \times a$ read: *a*-cubed

• Multiplication and division of powers with the same base

$$a^n a^m = a^{n+m}$$

Because:

$$a^{n}a^{m} = (a \times a \times a \dots) \times (a \times a \times a \dots) = a \times a \times a \times a \dots$$

n-times m-times n+m times

$$a^{n}: a^{m} = \frac{a^{n}}{a^{m}} = a^{n-m} \quad \text{if } n > m \quad \text{or} \quad \frac{a^{n}}{a^{m}} = \frac{1}{a^{m-n}} \quad \text{if } m > n$$
$$a^{n} = \frac{1}{a^{-n}}$$
$$a^{-n} = \frac{1}{a^{n}}$$

Then we define $\frac{a^n}{a^n} = a^{n-n} = a^0 = 1$

• Power of a product

$$(ab)^n = a^n \times b^n$$

because

 $(ab)^n = ab \times ab \times ab \times ... \times ab (n \text{ times}) = (a \times a \times a \times ... \times a) \times (b \times b \times b \times ... \times b) (n \text{ times})$

• Power raised on a power

 $(a^m)^n = a^{m \times n}$

example

 $(a^2)^3 = a^2 \times a^2 \times a^2$ (3 times) = $a \times a \times a \times a \times a \times a \times a$ (6 times) = a^6

MATH 5e: Class Work 11

Problems

- 1. Review: HW problems
- 2. List powers of 2^n and 3^n and for n = 1 to 8
- 3. Express with powers of 10, multiply and state the answer in powers of 10, with a prefix, in scientific notation, the following number

 $120\ 000 \times 300\ 000\ 000 =$

- 4. Calculate in the most efficient way.
 - a) $5^{12} \cdot 5^{-11} =$ b) $5^3 \cdot \frac{5^3}{5^5} =$ c) $(-5)^2 \cdot (-2)^2 =$ d) $(-12)^3 \cdot 4^{-3} =$
- 5. Present as a power.

a)
$$(x^2)^3$$
; $(2^3)^4$; $\left(\left(\frac{1}{2}\right)^2\right)^3$
b) $\left(\frac{5^2 \times 5^4}{5^3 \times 5^2}\right)^2$; $\left(\frac{10^0 \times 10^{10}}{5^8 \times 10^2}\right)^3$
c) $x^5 \cdot (x^2)^3$; $(x^3)^4$: x^8

- 6. Represent the numbers with one but smaller base.
 - a) 25⁴
 - b) $\frac{64^4}{16^4}$
 - c) $(3 \cdot 27)^3$
- 7. Simplify the following expressions.

a)
$$\frac{(-2)^7 - 2^4}{(-2)^4} =$$

b)
$$\frac{2^{8} \cdot 3^{6}}{2^{4} \cdot 9^{3}} =$$

c) $\frac{2^{6} \cdot 9^{2} \cdot 14^{2}}{4^{2} \cdot 3^{5} \cdot 7} =$

Arithmetic operations

- 8. Open the brackets and simplify the expressions
 - a) (x-5)(2x+1) =
 - b) $(x+7)(x^2-2x) =$
 - c) $(2y^3 3y + 2)(y 3) =$
 - d) (x+3)(x-3) x(x-2) =
- 9. Simplify the following expressions using the power rules (from HW)
 - a) $2^{-2}(2^2 + 4^2) =$
 - b) $6^3 (2^{-3} + 3^{-3}) =$

If time

10. Find the unknown

- a) $(3^2)^m = 3^{10}$
- b) $(7^n)^4 = 7^{12}$
- c) $5^3 \cdot x = 5^7$
- d) $3^x = 27$