MATH 5e: Class Work 10

Topics: Multiplication and division of powers with the same base, power of a product.

• Powers notation

General notation (*n* is a whole number):

 $a^n = a \times a \times a \times ... \times a$ (*n* times). *a* is called the base, and *n* - the exponent

Special cases:

 $a^{\overline{0}} = 1$ read: *a*-to-the-zero $a^{1} = a$ is just itself '*a*' $a^{2} = a \times a$ read: *a*-squared $a^{3} = a \times a \times a$ read: *a*-cubed

• Multiplication and division of powers with the same base

$$a^n a^m = a^{n+m}$$

Because:

$$a^{n}a^{m} = (a \times a \times a \dots) \times (a \times a \times a \dots) = a \times a \times a \times a \dots$$

n-times m-times n+m times

$$a^{n}: a^{m} = \frac{a^{n}}{a^{m}} = a^{n-m} \quad \text{if } n > m \quad \text{or} \quad \frac{a^{n}}{a^{m}} = \frac{1}{a^{m-n}} \quad \text{if } m > n$$
$$a^{n} = \frac{1}{a^{-n}}$$
$$a^{-n} = \frac{1}{a^{n}}$$

Then we define $\frac{a^n}{a^n} = a^{n-n} = a^0 = 1$

• Power of a product

$$(ab)^n = a^n \times b^n$$

because

 $(ab)^n = ab \times ab \times ab \times ... \times ab (n \text{ times}) = (a \times a \times a \times ... \times a) \times (b \times b \times b \times ... \times b) (n \text{ times})$

Problems

1. **Review:** HW problems

- 2. Write the product as a power.
 - a) $5^2 \cdot 5^3$
 - b) $7^2 \cdot 7^5 \cdot 7$
 - c) $a^2 \cdot a^4 \cdot a$
 - d) $2^2 \cdot 64$
 - e) 81×3^{6}
- 3. Find the prime factorization and write as a product of powers
 - a) 225
 - b) 72
 - c) 720 · 54
- 4. Calculate using the rules for the product of powers.
 - a) $2^3 \cdot (2+2^2)$ b) $0.3^3 \cdot (0.3^2 - 0.3)$ c) if x + y = 4 $2 \cdot 3^x \cdot 3^y$ d) (x+2)(x-2)

Division

- 5. Calculate
 - a) $2^5: 2^3$
 - b) $5^{-2} \cdot 5^{3}$
 - c) $\frac{7^3}{7^5}$
 - d) $\frac{3^{15}}{3^{5} \cdot 3^{6}}$

 - e) $\frac{3^{9}.7^{5}}{7^{6}.3^{8}}$
 - f) $2^{-3} \cdot (2+2^2)$

MATH 5e: Class Work 10

Power of a product

- 6. The side of a square is *a* cm. By what factor will the area increase if the side is 3 times larger than before?
- 7. Represent the expression as a product of powers.
 - a) $(5 \cdot 10)^2$
 - b) $(3 \cdot 10)^3$
 - c) $(5 \cdot 0.1)^2$
- 8. Calculate most efficiently.
 - a) $2^4 \cdot 5^4$
 - b) $0.5^{15} \cdot 2^{15}$
- 9. Powers of 10.

 - b) Using the powers of 10, write the numbers as a sum of powers of 10

3 848

62 017

- c) The speed of light is $3 \cdot 10^8$ *meters/second*. How many meters does the light pass in one second? How many kilometers in one second?
- 10. Many chemical elements are radioactive. This means that its quantity is reduced by half over some time period, called half-life. The radioactive element Francium (Fr) has a half-life of about 20 minutes. How much of the initial quantity will be left after 1 hour?

		Powers of 1	0	sciencenotes.org
Prefix	Exponent	Number 5	Scientific Notation	Name
Exa (E)	18	1,000,000,000,000,000,0	00 10 ¹⁸	quintillion
Peta (P)	15	1,000,000,000,000,000	10 ¹⁵	quadrillion
Tera (T)	12	1,000,000,000,000	10 ¹²	trillion
Giga (G)	9	1,000,000,000	10 ⁹	billion
Mega (M)	6	1,000,000	10 ⁶	million
kilo (k)	3	1,000	10 ³	thousand
hecto (h)	2	100	10 ²	hundred
deca (da)	1	10	10 ¹	ten
	0	1	10 ⁰	one
deci (d)	-1	0.1	10 ⁻¹	one tenth
centi (c)	-2	0.01	10 -2	one hundredth
milli (m)	-3	0.001	10 ⁻³	one thousandth
micro (µ)	-6	0.000001	10 ⁻⁶	one millionth
nano (n)	-9	0.00000001	10 ⁻⁹	one billionth
pico (p)	-12	0.00000000001	10 ⁻¹²	one trillionth
femto (f)	-15	0.000000000000001	10 ⁻¹⁵ c	one quadrillionth
atto (a)	-18	0.0000000000000000000000000000000000000	1 10 ⁻¹⁸ (one quintillionth