

Pigeonhole principle states that if *n* items are put **into m pigeonholes** with *n* > *m*, then at least one pigeonhole must contain more than one item.

- 1. Rational number is a real number that can be written as a simple/irregular fraction, i.e as a proportion $\frac{a}{b}$.
- 2. Theorem: any rational number is a finite or repeating decimal. The way we proved is using **Pigeonhole principle**.

Decimal fractions: $\frac{2}{7}$

Find simple fractions for $0.\overline{3}, 0.\overline{71}$,

 $0.\overline{3} = x$, multiply by 10.

$$3.\overline{3} = 10x \rightarrow 3 + 0.\overline{3} = 10x \rightarrow 3 + x = 10x$$

7)2000000	R = 2R
14 0	R=6
56	R=4
350	R=5 ·
49	R=1
+ 30	R=3
20	R = 2

Power Properties:

 $a^{n} = a \cdot a \cdots a \text{ (ntimes)}$ $(a \cdot b)^{n} = a^{n} \cdot b^{n}$ $a^{m} \cdot a^{n} = a^{m+n};$ $a^{m} \div a^{n} = a^{m-n}$ $a^{0} = 1$ $a^{-n} = \frac{1}{a^{n}}$ $5.12 \times 10^{6} = 5.12 \times 100000 = 5120000$

Scientific Notation:

```
5.12 × 10<sup>6</sup> = 5.12 × 1000000 = 5120000
1.2 × 10<sup>4</sup> × 3 × 10<sup>8</sup> = 1.2 × 3 × 10<sup>4</sup> × 10<sup>8</sup> = 3.6 × 10<sup>12</sup>
```

1L = 1dm³, 1mL = 1cm³. Units of volume

HOMEWORK 13, January 26, 2025

1. Simplify the following and show the answer in the exponent form

a)
$$\frac{3^{7} \cdot 2^{7}}{2^{3} \cdot 2^{4}} =$$

b) $\frac{6^{5} \cdot 2^{4}}{3^{5} \cdot 2^{2}} =$
c) $\frac{7^{9} \cdot 2^{5}}{7^{2} \cdot 2^{4}} =$
d) $\frac{11^{4}}{11^{2} \cdot 5^{2} \cdot 5^{3}} =$
e) $7^{4} \cdot 11^{2} \cdot 11^{-5} \cdot 7^{2} =$
f) $\frac{3^{-5} \cdot 2^{7}}{3^{-3} \cdot 2^{4}} =$
g) $\frac{42^{2}}{6^{2}} =$
h) $\frac{3^{5} \cdot 3^{-5}}{3^{9}} =$
i) $\frac{x^{2} \cdot y^{2} \cdot x^{-3}}{x^{2}} =$

- 2. Find a simple fraction form for the following repeating decimals:
 - a) $0.\overline{6}$ b) $0.\overline{7}$ c) $0.\overline{8}$
- **3.** Let $a = 2 \cdot 10^8$, $b = 10^5$, compute $a^2 \cdot b$, $\frac{a}{b}$, $a^2 \div b^3$.

$$1L = ?_cm^3 = ?_mm^3?_ = m^3?_ = km^3$$

- 4. It is known that 2¹⁰ = 1024, which is very close to 10³. Using this, can you <u>estimate</u> what is the value of 2²⁰? 2³²?
- Using pencil, ruler, and quadrille paper construct a rectangle ABCD with sides 3cm and 4 cm. Measure the diagonal AC. How much did you get?
- **6.** Using pencil, ruler, and quadrille paper construct isosceles triangle ABC with the base 5 cm and the height 4 cm. Using protractor measure all angles in your triangle: $\angle A$, $\angle B$, $\angle C$.
- 7. Using compass construct a circle with radius 5 cm. Using ruler draw diameter AB. Put any point K on the circle and construct the triangle ABK. Using protractor measure $\angle K$.