Math 5b. Classwork23.

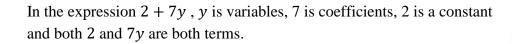
Algebraic expressions.

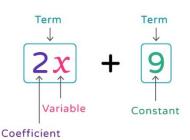
Algebraic expression, or variable expression, is a mathematical expression consisting of two main parts, variables and constants, joined together using mathematical operators addition, subtraction, multiplication, division, and exponentiation.

Here are a few examples of algebraic expressions:

$$2x^5;$$
 $2+7y;$ $3a-5b;$ $\frac{2+x}{2-x}=(2+x):(2-x), x \neq 0$

In the expression 3a - 5b a and b are variables, 3 and 5 are coefficients, 3a and 5b are both terms.





We can combine like terms and cannot combine unlike terms:

$$2x^5 + 4x^5 = 6x^5$$
 but $2x^5 + 4x^3 \neq 6x^?$

First equality is always the true for any x, second expression can't be defined.

(For the second expression we can find two values for x such that the left side of the expression will be equal to the right side, and the power of x on the right side is irrelevant. If x = 0 or 1:

$$2 \cdot 1^5 + 4 \cdot 1^3 = 6 \cdot 1^?$$
 $2 \cdot 0^5 + 4 \cdot 0^3 = 6 \cdot 0^?$)

We can work with the algebraic expressions in a very similar way as we work with numbers. We can add them, subtract them, multiply them and divide them (multiply by the invers expression).

For example:

Add the expressions: 4x - 3y and 5x + 7y - 4

$$(4x - 3y) + (5x + 7y - 4) = 4x - 3y + 5x + 7y - 4 = 9x + 4y - 4$$

Subtract the expressions: $5a - 7b^2$ and $7a + 7b - b^2 + 3$

$$(5a - 7b^2) - (7a + 7b - b^2 + 3) = 5a - 7b^2 - 7a - 7b + b^2 - 3 = -2a - 6b^2 - 7b - 3$$

Multiply $6z^2$ and $7b - b^2$:

$$6z^{2} \cdot (7b - b^{2})$$

$$= \underbrace{(7b - b^{2}) + (7b - b^{2}) + \dots + (7b - b^{2})}_{6z^{2}times} = \underbrace{7b + 7b + \dots + 7b}_{6z^{2}times} + \underbrace{(-b^{2}) + (-b^{2}) + \dots + (-b^{2})}_{6z^{2}times} = 6z^{2} \cdot 7b + 6z^{2} \cdot (-b^{2})$$

$$= \underbrace{42z^{2}b - 6z^{2}b^{2}}_{6z^{2}times}$$

Each term of the expression $(7b - b^2)$ is multiplied by $6z^2$ (a single term expression).

Multiply $3p^2 + a$ and 2b - a + 3:

$$(3p^2 + a)(2b - a + 3) = 3p^2 \cdot 2b - 3p^2 \cdot a + 3p^2 \cdot 3 + a \cdot 2b - a \cdot a + 3a$$
$$= 6p^2b - 3p^2a + 9p^2 + 2ab - a^2 + 3a$$

Irrational numbers

Rational number is a number which can be represented as a ratio of two integers:

$$a = \frac{p}{q};$$
 $p \in Z, and q \in N,$ $(Z = \{\pm \dots, \pm 1, 0\}, N = \{1, 2, \dots\})$

Rational numbers can be represented as infinite periodical decimals (in the case of denominators containing only powers of 2 and 5 the periodical bloc of such decimal is 0).

Numbers, which can't be express as a ratio (fraction) $\frac{p}{q}$ for any integers p and q are irrational numbers. Their decimal expansion is not finite, and not periodical.

Examples:

0.01001000100001000001...

0.123456789101112131415161718192021...

What side the square with the area of a m² does have? To solve this problem, we have to find the number, which gives us a as its square. In other words, we have to solve the equation

$$x^2 = a$$

This equation can be solved (has a real number solution) only if a is nonnegative (($a \ge 0$) number. It can be seen very easily;

If
$$x = 0$$
, $x \cdot x = x^2 = a = 0$,

If
$$x > 0$$
, $x \cdot x = x^2 = a > 0$,

If
$$x < 0$$
, $x \cdot x = x^2 = a > 0$,

We can see that the square of any real number is a nonnegative number, or there is no such real number that has negative square.

Square root of a (real nonnegative) number a is a number, square of which is equal to a.

There are only 2 square roots from any positive number, they are equal by absolute value, but have opposite signs. The square root from 0 is 0, there is no any real square root from negative real number.

Examples:

1. Find square roots of 16: 4 and (-4), $4^2 = (-4)^2 = 16$

2. Numbers $\frac{1}{7}$ and $\left(-\frac{1}{7}\right)$ are square roots of $\frac{1}{49}$, because $\frac{1}{7} \cdot \frac{1}{7} = \left(-\frac{1}{7}\right) \cdot \left(-\frac{1}{7}\right) = \frac{1}{49}$

3. Numbers $\frac{5}{3}$ and $\left(-\frac{5}{3}\right)$ are square roots of $\frac{25}{9}$, because $\left(\frac{5}{3}\right)^2 = \frac{5}{3} \cdot \frac{5}{3} = \left(-\frac{5}{3}\right)^2 = \left(-\frac{5}{3}\right) \cdot \left(-\frac{5}{3}\right) = \frac{25}{9}$

Arithmetic (**principal**) **square root** of a (real nonnegative) number a is a nonnegative number, square of which is equal to a.

There is a special sign for the arithmetic square root of a number $a: \sqrt{a}$. Examples;

- 1. $\sqrt{25} = 5$, it means that arithmetic square root of 25 is 5, as a nonnegative number, square of which is 25. Square roots of 25 are 5 and (-5), or $\pm\sqrt{25} = \pm5$
- 2. Square roots of 121 are 11 and (-11), or $\pm \sqrt{121} = \pm 11$
- 3. Square roots of 2 are $\pm\sqrt{2}$.
- 4. A few more:

$$\sqrt{0} = 0;$$
 $\sqrt{1} = 1;$ $\sqrt{4} = 2;$ $\sqrt{9} = 3;$ $\sqrt{16} = 4;$ $\sqrt{25} = 5;$ $\sqrt{\frac{1}{64}} = \frac{1}{8};$ $\sqrt{\frac{36}{25}} = \frac{6}{5}$

Base on the definition of arithmetic square root we can right

$$\left(\sqrt{a}\right)^2 = a$$

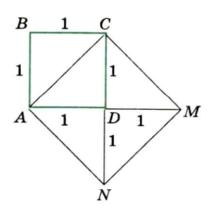
To keep our system of exponent properties consistent let's try to substitute $\sqrt{a} = a^k$. Therefore,

$$\left(\sqrt{a}\right)^2 = (a^k)^2 = a^1$$

But we know that

$$(a^k)^2 = a^{2k} = a^1 \implies 2k = 1, \ k = \frac{1}{2}$$

To solve equation $x^2 = 23$ we have to find two sq. root of 23. $x = \pm \sqrt{23}$. 23 is not a perfect square as 4, 9, 16, 25, 36 ...



The length of the segment [AC] is $\sqrt{2}$ (from Pythagorean theorem). The area of the square ACMN is twice the area of the square ABCD. Let assume that the $\sqrt{2}$ is a rational number, so it can be represented as a ratio $\frac{p}{q}$, where $\frac{p}{q}$ is nonreducible fraction.

$$\left(\frac{p}{q}\right)^2 = 2 = \frac{p^2}{q^2}$$

Or $p^2 = 2q^2$, therefore p^2 is an even number, and p itself is an even number, and can be represented as $p = 2p_1$, consequently

$$p^2 = (2p_1)^2 = 4p_1^2 = 2q^2$$

 $2p_1^2 = q^2 \Rightarrow q$ also is an even number and can be written as $q = 2q_1$.

$$\frac{p}{q} = \frac{2p_1}{2q_1}$$

therefore fraction $\frac{p}{q}$ can be reduced, which is contradict the assumption. We proved that the $\sqrt{2}$ isn't a rational number by contradiction.

 $\sqrt{2}$ is an irrational number, therefore its decimal representation is an infinite nonperiodically decimal:

To find a_1 let's consider numbers 1.0, 1.1, 1.2, 1.3

$$1.0^2 = 1;$$
 $1.1^2 = 1.21;$ $1.2^2 = 1.44$
 $1.3^2 = 1.69;$ $1.4^2 = 1.96;$ $1.5^2 = 2.25$

Therefore:

$$1.4^2 < 2 < 1.5^2$$
, $1.4 < \sqrt{2} < 1.5$

$$\sqrt{2} = 1.4a_2a_3 \dots$$

To find the next digit,

$$1.40^2 = 1.96;$$
 $1.41^2 = 1.9881;$ $1.42^2 = 1.2.0164$ $\sqrt{2} = 1.41a_3 \dots;$ $\sqrt{2} = 1.4142135 \dots$

Exercises.

1. Simplify the following expressions (combine like terms):

a.
$$7a + (2a + 3b);$$
b. $9x + (2y - 5x);$ c. $(5x + 7a) + 4x;$ d. $(5x - 7a) + 5a;$ e. $(3x - 6y) - 4y;$ f. $(2a + 5b) - 7b;$ g. $3m - (5n + 2m);$ h. $6p - (5p - 3a);$

2.

a.
$$(x^2 + 4x) + (x^2 - x + 1) - (x^2 - x);$$

b. $(a^5 + 5a^2 + 3a - a) - (a^3 - 3a^2 + a);$
c. $(x^2 - 3x + 2) - (-2x - 3);$
d. $(abc + 1) + (-1 - abc);$

3. Simplify the following expressions (rewrite the expressions without parenthesis, combine like terms);

Example:

$$(2x+3)\cdot(x+7) = 2xx + 2x\cdot7 + 3x + 3\cdot7 = 2x^2 + 10x + 21$$

$$(x+5)(x+y+3);$$

$$(k-1+d)(k-d);$$

$$\frac{2}{3} + 2x\left(\frac{1}{2} - \frac{1}{3}y\right) - x - \frac{1}{3}(2-2xy);$$

$$2x^{2}(x+y) - 3x^{2}(x-y);$$

4. Evaluate:

$$\frac{10^2 + 11^2 + 12^2 + 13^2 + 14^2}{365}$$

5. Prove that the value of the following expressions is a rational number.

a.
$$(\sqrt{2}-1)(\sqrt{2}+1)$$

b.
$$(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})$$

C.
$$(\sqrt{2}+1)^2+(\sqrt{2}-1)^2$$

d.
$$(\sqrt{7}-1)^2+(\sqrt{7}+1)^2$$

e.
$$(\sqrt{7} - 2)^2 + 4\sqrt{7}$$

6. Without using calculator compare:

$$3 \dots \sqrt{11}$$

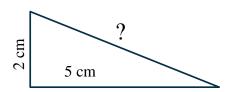
$$11~\dots~\sqrt{110}$$

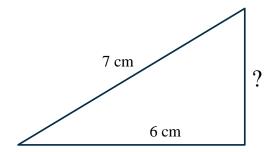
$$22 ... \sqrt{484}$$

5 ...
$$\sqrt{20}$$

$$35 \dots \sqrt{1215}$$

7. Find the missing length of the side of right triangles below:





8. Evaluate:

a.
$$5 \cdot \sqrt{4} \cdot 3$$
;

c.
$$\sqrt{13 - 3 \cdot 3}$$
;

$$e. \frac{1}{2}\sqrt{5^2+22:2};$$

$$b. \ \ 2 \cdot \sqrt{9} + 3 \cdot \sqrt{16}$$

d.
$$\sqrt{7^2 - 26:2}$$

$$f. \ 3\sqrt{0.64} - 5 \cdot \sqrt{1.21}$$