Math 5b. Classwork 9.

Rational numbers.

 $\begin{array}{c|c}
0.875 \\
8 \overline{)7.000}
\end{array}$

Positive rational number is a number which can be represented as a ratio of two natural numbers:

$$a = \frac{p}{q}; \qquad p, q \in N$$

As we know such number is also called a fraction, p in this fraction is a nominator and q is a denominator. Any natural number can be represented as a fraction with denominator 1:

$$b = \frac{b}{1}; \ b \in N$$

Basic property of fraction: nominator and denominator of the fraction can be multiplied by any non-zero number n, resulting the same fraction:

$$a = \frac{p}{q} = \frac{p \cdot n}{q \cdot n}$$

In the case that numbers p and q do not have common prime factors, the fraction $\frac{p}{q}$ is irreducible fraction. If p < q, the fraction is called "proper fraction", if p > q, the fraction is called "improper fraction".

If the denominator of fraction is a power of 10, this fraction can be represented as a finite decimal, for example,

$$\frac{37}{100} = \frac{37}{10^2} = 0.37, \qquad \frac{3}{10} = \frac{3}{10^1} = 0.3, \qquad \frac{12437}{1000} = \frac{12437}{10^3} = 12,437$$

$$10^n = (2 \cdot 5)^n = 2^n \cdot 5^n$$

$$\frac{2}{5} = \frac{2}{5^1} = \frac{2 \cdot 2^1}{5^1 \cdot 2^1} = \frac{4}{10} = 0.4$$

Therefore, any fraction, which denominator is represented by $2^n \cdot 5^m$ can be written in a form of finite decimal. This fact can be verified with the help of the long division, for example $\frac{7}{8}$ is a proper fraction, using the long division this fraction can be written as a decimal $\frac{7}{8} = 0.875$. Indeed,

$$\frac{7}{8} = \frac{7}{2 \cdot 2 \cdot 2} = \frac{7 \cdot 5 \cdot 5 \cdot 5}{2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5} = \frac{7 \cdot 5^{3}}{2^{3} \cdot 5^{3}} = \frac{7 \cdot 125}{(2 \cdot 5)^{3}} = \frac{875}{10^{3}} = \frac{875}{1000} = 0.875$$

0.71428571... Also, any finite decimal can be represented as a fraction with denominator 10^n .

In other words, if the finite decimal is represented as an irreducible fraction, the denominator of this fraction will not have other factors besides 5^m and 2^n . Converse statement is also true: if the irreducible fraction has denominator which only contains 5^m and 2^n than the fraction can be written as a finite decimal. (Irreducible fraction can be represented as a finite decimal if and only if it has denominator containing only 5^m and 2^n as factors.)

..... If the denominator of the irreducible fraction has a factor different from 2 and 5, the fraction cannot be represented as a finite decimal. If we try to use the long division process, we will get an infinite periodic decimal.

At each step during this division, we will have a remainder. At some point during the process, we will see the remainder which occurred before. Process will start to repeat itself. On the example on the left, $\frac{5}{7}$, after 7, 1, 4, 2, 8, 5, remainder 7 appeared again, the fraction $\frac{5}{7}$ can be represented only as an infinite periodic decimal and should be written as $\frac{5}{7} = 0.\overline{714285}$. (Sometimes you can find the periodic infinite decimal written as $0.\overline{714285} = 0.(714285)$).

How we can represent the periodic decimal as a fraction?

Let's take a look on a few examples: $0.\overline{8}$, $2.35\overline{7}$, $0.\overline{0108}$.

$0.\overline{8}$.	2.357	0. 0108
$x = 0.\overline{8}$	$x = 2.35\overline{7}$	$x = 0.\overline{0108}$
$10x = 8.\overline{8}$	$100x = 235.\overline{7}$	$10000x = 108.\overline{0108}$
$10x - x = 8.\overline{8} - 0.\overline{8} = 8$	$1000x = 2357.\overline{7}$	10000x - x = 108
9x = 8	$1000x - 100x = 2357.\overline{7} - 235.\overline{7}$	108 12
8	= 2122	$x = \frac{1}{9999} = \frac{1}{1111}$
$x = \frac{1}{9}$	2122 1061	
	$x = \frac{1}{900} = \frac{1}{450}$	

Now consider $2.4\overline{0}$ and $2.3\overline{9}$

$$x = 2.4\overline{0}$$

$$100x - 10x = 240 - 24$$

$$100x = 240.\overline{0}$$

$$x = \frac{240 - 24}{90} = \frac{216}{90} = 2.4$$

$$x = 2.3\overline{9}$$

 $10x = 23.\overline{9}$
 $100x = 239.\overline{9}$

$$100x - 10x = 239 - 23$$
$$x = \frac{239 - 23}{90} = \frac{216}{90} = 2.4$$

Algebraic expression.

Expressions where variables, and/or numbers are added, subtracted, multiplied, and divided.

For example:

$$2a$$
; $3b + 2$; $3c^2 - 4xy^2$

We can do a lot with algebraic expressions, even so we don't know exact values of variables. First, we always can combine like terms:

$$2x + 2y - 5 + 2x + 5y + 6 = 2x + 2x + 5y + 2y + 6 - 5 = 4x + 7y + 1$$

We can multiply an algebraic expression by a number or a variable:

$$3 \cdot (1 + 3y) = 3 \cdot 1 + 3 \cdot 3y = 3 + 9y$$

In this example the distributive property was used. Using the definition of multiplication we can write:

$$3 \cdot (1 + 3y) = (1 + 3y) + (1 + 3y) + (1 + 3y) = 3 + 3 \cdot y = 3 + 9y$$

Another example:

$$5a(5-5x) = \underbrace{(5-5x) + (5-5x) + \dots + (5-5x)}_{5a \text{ times}} = \underbrace{5+5+\dots + 5}_{5a \text{ times}} - \underbrace{5x-5x-\dots - 5x}_{5a \text{ times}}$$

$$=\underbrace{5+5+\dots+5}_{5a \ times} -\underbrace{5x-5x-\dots-5x}_{5a \ times} = 5a \cdot 5 - 5a \cdot 5x = 25a - 25ax$$

If we need to multiply two expressions

$$(a + 2) \cdot (a + 3)$$

We can use a substitution technic, we will substitute one of the expressions with a variable, for example, instead of (a + 2) we can use u.

$$(a+2)=u$$

And then we will multiply

$$u \cdot (a+3) = u \cdot a + 3u$$

We know, that actually u should not be there, (a + 2) should.

$$u \cdot (a + 3) = (a + 2) \cdot a + 3(a + 2)$$

We know how to multiply an expression by a variable (or number):

$$(a+2) \cdot a + 3(a+2) = a \cdot a + 2a + 3a + 3 \cdot 2 = a^2 + 5a + 6$$

$$(a+2) \cdot (a+3) = a \cdot a + 3a + 2a + 3 \cdot 2 = a^2 + 5a + 6$$

$$(a+2) \cdot (a+3) = a^2 + 5a + 6$$

There are a few very useful products:

$$(a + b)^2 = (a + b) \cdot (a + b) = a \cdot a + a \cdot b + b \cdot a + b \cdot b = a^2 + 2ab + b^2$$

Let's do a few examples:

$$(2+x)^2 = (2+x)(2+x) = 2 \cdot 2 + 2 \cdot x + x \cdot 2 + x \cdot x = 2^2 + 2x + 2x + x^2 = x^2 + 2 \cdot 2x + 4$$
$$= x^2 + 4x + 4$$

$$(ab + 2y)^2 = (ab + 2y)(ab + 2y) = ab \cdot ab + ab \cdot 2y + 2y \cdot ab + 2y \cdot 2y = a^2b^2 + 2yab + 2yab + 4y^2$$
$$= a^2b^2 + 4yab + 4y^2$$

$$(a-b)(a+b) = a \cdot a + a \cdot b - a \cdot b + b \cdot b = a^2 - b^2$$

Exercises.

1. Evaluate the following using decimals:

a.
$$0.36 + \frac{1}{2}$$
; b. $5.8 - \frac{3}{4}$; c. $\frac{2}{5}$: 0.001; d. $7.2 \cdot \frac{1}{1000}$

2. Evaluate the following using fractions:

a.
$$\frac{2}{3} + 0.6$$
; b. $1\frac{1}{6} - 0.5$; c. $0.3 \cdot \frac{5}{9}$; d. $\frac{8}{11} : 0.4$;

3. Write as a periodical decimal;

Example: $0.\overline{8} = 0.88888 \dots$; $0.34\overline{543} = 0.34543543543 \dots$

a. $0.\overline{5}$; b. $0.12\overline{333}$; $0.\overline{1243}$;

4. Write as a fraction

a.
$$0.\overline{5}$$
, b. 0.5 , c. $0.\overline{7}$, d. 0.7 , e. $0.1\overline{2}$, f. $0.\overline{12}$, g. 0.12

5. Multiply.

a.
$$(a+2)(a+2)$$
; f. $(a+1)(a+3)$; b. $(3+y)(y+4)$; g. $(c+d)(c-2d)$;

c.
$$(3+x)(3-x)$$
; h. $(y-2)(3-y)$; d. $(x-y)(x+y)$; i. $(x-m)(x-m)$;

e.
$$(2a+c)(a+ac)$$
; j. $(2d+3l)(2d+3l)$