Math 4. Class Work 9

Expressions

- Set of operations that must be performed on terms, including numbers and variables, to receive a more straightforward expression or an exact numerical answer.
 - o Opening the parenthesis (brackets) that uses the distributive property
 - o Addition of similar terms

Multiplication of fractions by a number.

- To multiply a fraction by a number, simply multiply the numerator by the number.
- Finding a part of a whole number involves multiplying the fraction by the number.

$$\frac{2}{7} \cdot 3 = \frac{2}{7} + \frac{2}{7} + \frac{2}{7} = \frac{2+2+2}{7} = \frac{3\cdot 2}{7} = \frac{6}{7}$$
 (this is also finding 2/7 of 3)

Multiplication of fraction by a fraction.

- To multiply two fractions, we need to multiply the numerators, multiply the denominators, and reduce the fractions, if possible.
- Finding a part of a fraction involves multiplying the fractions together.

Examples:
$$\frac{3}{8} \cdot \frac{2}{7} = \frac{3 \cdot 2}{4 \cdot 2 \cdot 7} = \frac{3 \cdot 2}{4 \cdot 7 \cdot 2} = \frac{3}{4 \cdot 7} = \frac{3}{28}$$
 (this is also 3/8 of 2/7)

Division of fractions.

- To divide one fraction by another, we multiply the dividend by the inverse fraction.
- An inverse fraction has the numerator and denominator switched, so the product of the original and its inverse fraction is 1. Inverse fractions can also be called reciprocal.

Example:
$$\frac{4}{3}$$
 has a reciprocal of $\frac{3}{4}$, and $\frac{4}{3} \cdot \frac{3}{4} = 1$

Complex fractions

• Complex fractions are formed by two fractional or two numeral expressions, one on the top and the other on the bottom. Simplify the expressions first. Remember – the fraction line means division

Example:
$$\frac{(2+3)\cdot 5}{7-\frac{1}{2}} = ((2+3)\cdot 5): (7-\frac{1}{2}) = (5\cdot 5): (\frac{7\cdot 2-1}{2}) = 25: (\frac{13}{2}) = 25 \cdot \frac{2}{13} = \frac{50}{13}$$

Problems:

1. Underline the similar terms and add/subtract them to simplify the expression

a)
$$x + 6 + 3y + 4 + x - 15 - 6y + 2x =$$

b)
$$2a - 45 + y + 90 + 5a =$$

- 2. Open (remove) the parentheses:
 - a) $2 \cdot (11x 7y) =$ _____
 - b) $(5y 7x) \cdot 3 =$ _____
 - c) $(3w + 1) \cdot 3 =$
 - d) $4 \cdot (3 2w) =$
 - e) $(2x + 3) \cdot 2 + \overline{1} =$
- 3. Show that the left side is equal to the right side by opening the parentheses and collecting similar terms
 - a) $2 \cdot (11x 7y) + (5y 7x) \cdot 3 = x + y$
 - b) $(3w + 1) \cdot 3 + 4 \cdot (3 2w) = 15 + w$
- 4. Quick fractions break (do as many as you can in 5 minutes)
 - a) Find ... $\frac{3}{4}$ of 28
- $\frac{7}{11}$ of 55

 $\frac{3}{5}$ of 30

- **b)** Add ... $\frac{1}{11} + \frac{3}{11} =$
- $\frac{2}{7} + \frac{3}{7} =$

 $\frac{1}{9} + \frac{4}{9} =$

- c) Simplify using factoring...
 - $\frac{4}{20} = \frac{6}{8} = \frac{12}{18} =$

- **6.** Expand where necessary to make the same denominators and to compare (>, <, or =):
 - $\frac{4}{5}$ $\frac{3}{7}$

 $\frac{11}{16}$ $\boxed{\frac{5}{12}}$

 $\frac{7}{12}$ $\square \frac{5}{9}$

5. Draw a number line with a unit segment equal to 10 cells and mark the fractions:

$$\frac{1}{5}$$
; $\frac{2}{5}$; $\frac{3}{5}$; $\frac{5}{5}$; $\frac{6}{5}$; $\frac{8}{5}$.

- 6. A cyclist planned her ride in advance. She covered 1/4 of the distance in the first hour. During the second hour, she drove 1/5 of the distance, and during the third hour, she covered 3/10 of the distance. How much more does she still need to cover?
- 7. Solve the equations in your notebook:

a)
$$8 - \frac{1}{5}x = 2$$

b) $\frac{1}{5}x + 7 = 9$

b)
$$\frac{1}{5}x + 7 = 9$$

9. Complex fractions (some from the homework)

a)
$$\frac{\frac{7}{10} + \frac{1}{3}}{\frac{7}{10} + \frac{1}{2}}$$

$$b) \ \frac{2 - \frac{\frac{1}{2} - \frac{1}{4}}{2}}{2 + \frac{\frac{1}{2} - \frac{1}{4}}{2}}$$

c)
$$\frac{3\frac{1}{5}}{\left(1\frac{5}{6}\cdot1\frac{5}{22}\right):18\cdot5}$$

10. The sum of all numbers in the square is 10. What number should be placed in the ? box?

$2\frac{1}{7}$	$5\frac{4}{7}$
$\frac{3}{7}$?

$1\frac{4}{5}$	$3\frac{2}{5}$
?	$2\frac{1}{5}$