Math 4. Class Work 7

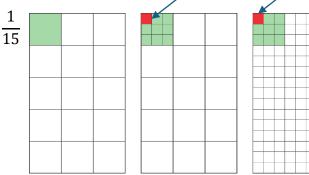
Addition and subtraction of fractions with unlike denominators

• To add fractions, bring them to a Common denominator. The **common denominator** of fractions should be <u>the multiple of these denominators</u> – the **LCM** can do this task!

For example, $\frac{3}{8} + \frac{5}{12} = \frac{3 \cdot 3}{8 \cdot 3} + \frac{5 \cdot 2}{12 \cdot 2} = \frac{9}{24} + \frac{10}{24} = \frac{19}{24}$

If both numbers are prime, the least common multiple is their product.

Multiplication of fractions by a number.

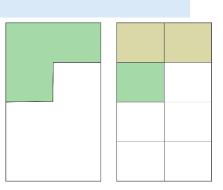

• To multiply a fraction by a number, simply multiply the numerator by the number:

$$\frac{2}{7} \cdot 3 = \frac{2}{7} + \frac{2}{7} + \frac{2}{7} = \frac{2+2+2}{7} = \frac{3 \cdot 2}{7} = \frac{6}{7}$$

Multiplication of fraction by a fraction.

If we want to take $\frac{1}{9}$ part of a $\frac{1}{15}$ chunk of a bar (green square) we have to divide it into 9 even smaller pieces to find $\frac{1}{9}$ of $\frac{1}{15}$. $\frac{1}{15} \cdot 9 = \frac{1}{15} \cdot \frac{1}{9} = \frac{1}{15 \cdot 9} = \frac{1}{135}$ $\frac{1}{15}$

• To multiply two fractions, we need to multiply the numerators, multiply the denominators and reduce the fractions, if possible.


Examples: $\frac{3}{8} \cdot \frac{2}{7} = \frac{3 \cdot 2}{4 \cdot 2 \cdot 7} = \frac{3 \cdot 2}{4 \cdot 7 \cdot 2} = \frac{3}{4 \cdot 7} = \frac{3}{28}$

Division of fractions.

If the multiplication of fractions is: $\frac{3}{8} \cdot \frac{2}{3} = \frac{2}{8} = \frac{1}{4}$ Then, the division of $\frac{1}{4}$ by $\frac{2}{3}$ should give the quotient $\frac{3}{8}$. $\frac{1}{4} \cdot \frac{2}{3} = \frac{3}{8}$

We can turn the division into multiplication by switching the numerator and denominator of the second fraction the divisor) Example $\frac{1}{4}: \frac{2}{3} = \frac{1}{4} \cdot \frac{3}{2} = \frac{3}{8}$

- To divide one fraction by another, we multiply the dividend by the **inverse fraction**.
- An inverse fraction has the numerator and denominator switched, so the product of the original and its inverse fraction is 1. Inverse fractions can also be called reciprocal.

Example: $\frac{4}{3}$ has a reciprocal of $\frac{3}{4}$, and $\frac{4}{3} \cdot \frac{3}{4} = 1$

Warm-up (do on your own while waiting)

Represent as a mixed number:

$$\frac{15}{4} = ; \frac{18}{9} = ; \frac{10}{3} =$$

Represent as improper fractions:

$$1\frac{4}{7} = ; 3\frac{1}{10} = ; 1\frac{9}{14} =$$

Problems:

1. Addition and subtraction of mixed numbers - convert to improper fractions,

Example :

$$\frac{3}{8} + 2\frac{1}{4} = \frac{3}{8} + \frac{9}{4} = \frac{3}{8} + \frac{9.2}{4.2} = \frac{3}{8} + \frac{18}{8} = \frac{3+18}{8} = \frac{21}{8} = 2\frac{5}{8}$$

$$2\frac{1}{3} - 1\frac{1}{2} = \frac{7}{3} - \frac{3}{2} = \frac{7.2}{3.2} - \frac{3.3}{2.3} = \frac{14}{6} - \frac{9}{6} = \frac{5}{6}$$
a) $\frac{1}{4} + 3\frac{1}{6} = \frac{4\frac{1}{5} - 2\frac{3}{10}}{10} = \frac{7\frac{1}{9} - 4\frac{1}{3}}{10} = \frac{7\frac{1}{9} - 4\frac{1}{3}}{10} = \frac{2\frac{2}{7} - 1\frac{3}{7}}{10} = \frac{2}{7}$

d)
$$4\frac{3}{5} + 10\frac{1}{4} = 6\frac{1}{4} - 3\frac{2}{5} = 6\frac{1}{4} - 3\frac{1}{5} = 6\frac{1}{4} - 3\frac{1}{5} = 6\frac{1}{5} - 3\frac{1}{5} - 3\frac{1}{5} = 6\frac{1}{5} - 3\frac{1}{5} - 3\frac{1}$$

2. Multiply and divide the following fractions:

a) $\frac{4}{5} \cdot \frac{5}{7} =$	$\frac{2}{3}:\frac{5}{7}=$
b) $\frac{8}{9} \cdot \frac{3}{5} =$	$\frac{1}{4}:\frac{1}{2}=$

c)
$$\frac{9}{2} \cdot \frac{2}{9} =$$

d) $\frac{8}{21} \cdot \frac{7}{10} =$
e) $\frac{4}{7} \cdot \frac{5}{24} : 1\frac{1}{14} =$

$$\frac{4}{9} : \frac{8}{9} =$$

$$\frac{3}{4} : \frac{1}{2} =$$

$$25 \cdot \frac{7}{15} : \frac{7}{9} =$$

- 3. Painter painted $\frac{2}{7}$ of the house is 4 days. How many days will it take him to paint the whole house? Represent with an equation.
- 4. Evaluate:

$$\frac{3}{7} \cdot 2;$$
 $3 \cdot \frac{1}{6};$ $9 \cdot \frac{5}{6};$ $2\frac{1}{3} \cdot 2;$ $4 \cdot 1\frac{1}{2};$

- 5. A melon weighs 7 pounds, and a watermelon is $1\frac{1}{5}$ times heavier. By how many pounds is a watermelon heavier than a melon?
- 6. $4\frac{1}{2}$ kg. of candies were packed into $\frac{1}{2}$ kg packages. How many packages were the candies packed into?
- 7. Find the unknown:

a)
$$\frac{1}{3} \cdot x = \frac{1}{6}$$
 b) $\frac{2}{3} \cdot x = 1$ c) $3 \cdot x = \frac{1}{3}$

If time allows, we can solve problems from our previous class work.