MATH 10 ASSIGNMENT 18: SERIES 2

MAR 2, 2025

SERIES

Recall: given a sequence a_n , we define

$$\sum_{i=1}^{\infty} a_i = \lim S_n, \quad \text{where}$$
$$S_n = a_1 + \dots + a_n = \sum_{i=1}^n a_i$$

(if this limit exists; otherwise we say that the series diverges and expression $\sum_{i=1}^{\infty} a_i$ is meaningless). For example:

$$1 + r + r^{2} + \dots = \sum_{i=0}^{\infty} r^{i} = \lim \frac{1 - r^{n+1}}{1 - r} = \frac{1}{1 - r}, \qquad |r| < 1$$

(this series is called the *geometric series*).

Note that it is quite possible that the sequence a_n converges but the sequence S_n of partial sums does not converge and thus the series $\sum_{i=1}^{\infty} a_i$ diverges!!

In the last HW, we have proved the following facts.

Theorem.

- **1.** If a series $\sum a_n$ converges, then $\lim a_n = 0$. (Converse is not true: even if $\lim a_n = 0$, the series may diverge).
- **2.** If $0 \le a_n \le b_n$, and $\sum b_n$ converges, then $\sum a_n$ also converges.

In fact, there is a more general result:

Theorem (Comparison test). If a_n, b_n are sequences such that $b_n \ge 0$, $|a_n| \le b_n$ and the series $\sum_{1}^{\infty} b_n$ converges, then $\sum_{1}^{\infty} a_n$ also converges.

The proof of this result will be given later. Note that it also works if a_n is a complex sequence (but b_n must be real, as we require $b_n > 0$).

HOMEWORK

- 1. A tortoise is moving on the plane starting at the origin and then going 1 unit along the positive direction of x axis; then turning 90° to the left and going for 0.9 units, then turning 90° to the left and going for $(0.9)^2$ units, then....
 - (a) Show that if we consider the plane as the complex plane \mathbb{C} , then the position of the tortoise after n steps will be at the point $1 + r + r^2 + \cdots + r^{n-1}$, where r = 0.9i.
 - (b) Find where the tortoise will end up in the limit, after infinitely many steps.
- 2. Let a_n be a sequence such that lim |a_{n+1}| / |a_n| = 0.9

 (a) Show that for large enough n, we have |a_n| < C(0.95)ⁿ for some constant C
 - (b) Deduce from this that the series $\sum a_n$ converges.
- **3.** Let a_n be a sequence such that $r = \lim \frac{|a_{n+1}|}{|a_n|}$ exists.
 - (a) Show that if r > 1, then $\lim a_n$ does not exists, and therefore $\sum_{1}^{\infty} a_n$ diverges (compare with Problem 1 from previous HW).
 - (b) Prove that if r < 1, then the series $\sum_{1}^{\infty} a_n$ converges. [Hint: modify the argument from the previous problem]
 - (c) Give examples showing that if r = 1, then series $\sum_{1}^{\infty} a_n$ may converge or diverge.
 - This is known as the *ratio test* for series convergence.

4. Use the ratio test from the previous problem to prove that the series

$$\sum \frac{n}{2^n}$$

converges.

5. Prove that for any $x \in \mathbb{C}$, the series

$$E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

converges. [Hint: use the ratio test from problem 3.]

- 6. Let E(x) be as defined in the previous problem. Prove that then E(x+y) = E(x)E(y). [Hint: both sides can be written as "double series" $\sum a_{m,n}x^ny^m$. You can use without a proof that in all the series involved, rearranging the terms in any order will not affect the value of the series.]
- 7. Let $e = \sum_{n=0}^{\infty} \frac{1}{n!} = E(1)$ (we have seen it in the previous homework). Prove that then $E(x) = e^x$: (a) For all integer x
 - (b) For all rational x = p/q
 - *(c) For all real x