MATH 10 ASSIGNMENT 8: CROSS-PRODUCT

NOVEMBER 10, 2024

SIGNED AREA: REVIEW

Recall that we had defined "wedge product" of two vectors in the plane by

(1)
$$\mathbf{v} \wedge \mathbf{w} = x_1 y_2 - y_1 x_2 \in \mathbb{R}$$

One can think of $\mathbf{v} \wedge \mathbf{w}$ as "signed area":

$$\mathbf{v} \wedge \mathbf{w} = \begin{cases} S_{ABCD}, & \text{if rotation from } \mathbf{v} \text{ to } \mathbf{w} \text{ is counterclockwise} \\ -S_{ABCD}, & \text{if rotation from } \mathbf{v} \text{ to } \mathbf{w} \text{ is clockwise} \end{cases}$$

The wedge product (and thus, the signed area) is in many ways easier than the usual area. Namely, we have:

1. It is linear: $(\mathbf{v}_1 + \mathbf{v}_2) \wedge \mathbf{w} = \mathbf{v}_1 \wedge \mathbf{w} + \mathbf{v}_2 \wedge \mathbf{w}$

2. It is anti-symmetric: $\mathbf{v} \wedge \mathbf{w} = -\mathbf{w} \wedge \mathbf{v}$

CROSS-PRODUCT

If \mathbf{v}, \mathbf{w} are two vectors in \mathbb{R}^3 , then we can define a different kind of product, called the cross-product, which is a **vector** in \mathbb{R}^3 , defined by

$$\begin{bmatrix} x_1\\y_1\\z_1 \end{bmatrix} \times \begin{bmatrix} x_2\\y_2\\z_2 \end{bmatrix} = \begin{bmatrix} y_1z_2 - z_1y_2\\z_1x_2 - x_1z_2\\x_1y_2 - y_1x_2 \end{bmatrix}$$

For example, if \mathbf{v} , \mathbf{w} are vectors in the xy plane, then $\mathbf{v} \times \mathbf{w}$ is a vector along the direction of the z-axis; moreover, in this case

$$\mathbf{v} \times \mathbf{w} = (\mathbf{v} \wedge \mathbf{w})\mathbf{j}$$

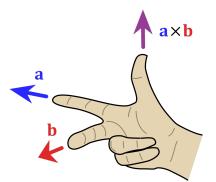
where \mathbf{j} is the unit vector in the positive direction of z-axis.

The cross-product has several important properties. Some of them are proved below, others are left without a proof.

1. It is linear in \mathbf{v} , \mathbf{w} : $(\mathbf{v}' + \mathbf{v}'') \times \mathbf{w} = \mathbf{v}' \times \mathbf{w} + \mathbf{v}'' \times \mathbf{w}$, and similarly for \mathbf{w}

2. It is anti-symmetric: $\mathbf{v} \times \mathbf{w} = -\mathbf{w} \times \mathbf{v}$

- **3.** $|\mathbf{v} \times \mathbf{w}| = \text{area of the parallelogram with sides } \mathbf{v}, \mathbf{w}$
- 4. $\mathbf{v} \times \mathbf{w}$ is perpendicular to the plane containing \mathbf{v} , \mathbf{w}
- **5.** The direction of $\mathbf{v} \times \mathbf{w}$ is determined by so-called right hand rule:



Thus, if **v** is along positive direction of x axis, and **w** is in the positive direction of y-axis, then $\mathbf{v} \times \mathbf{w}$ will be in the positive direction of the z-axis.

Problems

- **1.** Find the distance from point (2, 1) to line x + 2y = 3.
- **2.** Find the angle between planes x + 2y + z = 5, x = y.
- **3.** Check that if $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are unit vectors along positive directions of x, y, z axes respectively, then

$\mathbf{i}\times\mathbf{j}=\mathbf{k}$

and similar for the cyclic permutations of these three vectors: $\mathbf{j} \times \mathbf{k} = \mathbf{i}, \mathbf{k} \times \mathbf{i} = \mathbf{j}$

- 4. Use explicit computation to check that if $\mathbf{u} = \mathbf{v} \times \mathbf{w}$, then $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w} = 0$.
- 5. (a) Use cross-product to construct a vector perpendicular to both of the vectors below:

$$\begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

(b) Write the equation of the plane through points (0,0,0), (1,0,2), (1,1,1).

- 6. Show that if all vertices of a triangle in the plane have integer coordinates, then its area A is a half-integer (i.e., $2A \in \mathbb{Z}$). Is the same true for any polygon?
- 7. For three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^3 , define the triple product $T(\mathbf{u}, \mathbf{v}, \mathbf{w})$ by the formula

$$T(\mathbf{u},\mathbf{v},\mathbf{w}) = (\mathbf{v} imes \mathbf{w})ullet \mathbf{u}$$

(note that it is a number, not a vector). The notation T is not standard.

- (a) Write an explicit formula the triple product in terms of x, y, and z components of \mathbf{u} , \mathbf{v} , \mathbf{w} .
- (b) Check that the triple product is linear in each of the three vectors and is anti-symmetric:

$$T(\mathbf{u}, \mathbf{v}, \mathbf{w}) = -T(\mathbf{v}, \mathbf{u}, \mathbf{w})$$

and similarly for any other transposition (interchange of any two of the three vectors).

- (c) Deduce from part (b) that $T(\mathbf{u}, \mathbf{v}, \mathbf{w}) = T(\mathbf{w}, \mathbf{u}, \mathbf{v})$. [Hint: one can get triple $\mathbf{w}, \mathbf{u}, \mathbf{v}$ from $\mathbf{u}, \mathbf{v}, \mathbf{w}$ by two transpositions]
- (d) Deduce from part (b) that $T(\mathbf{v}, \mathbf{v}, \mathbf{w}) = 0$ and thus $\mathbf{v} \times \mathbf{w}$ is perpendicular to \mathbf{v} .
- (e) Show that for a parallelepiped P with edges given by vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$, its volume is given by

$$V_P = |T(\mathbf{u}, \mathbf{v}, \mathbf{w})|$$

8. What is the volume of a tetrahedron with vertices $A = (0, 0, 0), B = (x_1, y_1, z_1), C = (x_2, y_2, z_2), D = (x_3, y_3, z_3)$?