HW 22

Carboxylic acids – organic compounds containing carboxyl group COOH, note that the central carbon of the functional group is doubly bonded to the oxygen atom and singly bonded to hydroxyl group.

Remember that Acids can provide H^+ (proton) for reactions with other compounds.

 $H2SO4 + Zn \rightarrow H2 + ZnSO4$

 $HCl + Ag NO3 \rightarrow AgCl + HNO3$

In water solution acids dissociate:

 $HCl + H2O = Cl^{-} + H^{+}$ proton usually is written in as H_3O^{+} instead of H^{+}

Acids undergo neutralization reaction with bases, the products of this reaction water and corresponding salt.

Carboxylic acids as well as inorganic acids provide proton for chemical reactions. In the solution carboxylic acids will undergo ionization with the formation of proton and negatively charged ion. This proton comes from OH group, and carboxylic acid will participate in all reactions typical for acids. For example, neutralization reaction will look like this:

 $HCOOH + NaOH \rightarrow HCOONa + H_2O$

The product of the reaction is corresponding salt, it is ionic compound, generally charges are indicated $HCOO^-Na^+$

One of the specific reactions for carboxylic compounds – esterification reaction

$$R - C - OH + ROH \stackrel{H^+}{\longleftrightarrow} R - C - OR + H_2O$$

R in organic chemistry represent "the rest of the molecule, part of the molecule that is outside of the functional group (it can be any alkyl group, benzene ring etc.)

Esterification reaction – reaction between carboxylic acid and alcohol, the product is ester, the products have very distinct smell, it can smell like different fruits.

The names and chemical formulas for carboxylic acids you can see in the following table:

Formula	Common Name	Source	IUPAC Name	Melting Point	Boiling Point
HCO ₂ H	formic acid	ants (L. formica)	methanoic acid	8.4 ºC	101 ºC
CH ₃ CO ₂ H	acetic acid	vinegar (L. acetum)	ethanoic acid	16.6 ºC	118 ºC
CH ₃ CH ₂ CO ₂ H	propionic acid	milk (Gk. protus prion)	propanoic acid	-20.8 ºC	141 ºC
CH3(CH2)2CO2H	butyric acid	butter (L. butyrum)	butanoic acid	-5.5 ºC	164 ºC
CH ₃ (CH ₂) ₃ CO ₂ H	valeric acid	valerian root	pentanoic acid	-34.5 ºC	186 ºC
CH ₃ (CH ₂) ₄ CO ₂ H	caproic acid	goats (L. caper)	hexanoic acid	-4.0 ºC	205 ºC
CH ₃ (CH ₂) ₅ CO ₂ H	enanthic acid	vines (Gk. oenanthe)	heptanoic acid	-7.5 ºC	223 ºC
CH3(CH2)6CO2H	caprylic acid	goats (L. caper)	octanoic acid	16.3 ºC	239 ºC
CH ₃ (CH ₂) ₇ CO ₂ H	pelargonic acid	pelargonium (an herb)	nonanoic acid	12.0 ºC	253 ºC
CH ₃ (CH ₂) ₈ CO ₂ H	capric acid	goats (L. caper)	decanoic acid	31.0 ºC	219 ºC

Remember that typical writing for carboxylic acids goes like this RCOOH, formic acid HCOOH, acetic acid CH3COOH, C2H5COOH propanoic acid etc.

Questions:

3. El Writz ionization equation for the following corboxyeic neids in water H-c of CH3-CH2-C OH

Il write neutralization reaction for the same acide. (see I)