HW17

Stoichiometric relationships. Stoichiometry is the study of the ratios in which chemical substances combine in reactions.

The number of moles in a given mass of a substance can be calculated using the equation Number of moles (n) = mass of substance/ molar mass

n = m/M

Molar mass (M) numerically equal to molecular mass (M_r). The unit for M (molar mass) is g/mol or gmol⁻¹

Mass of substance (m) must be in grams.

The unit for moles is mol.

Example: sulfur, the atomic weight (A_r) of S can be found in the periodic table, $A_r = 32.06$ Molar mass of sulfur (M) 32.06 gmol⁻¹

This means 32.06 g of S contains 6.02x10²³ sulfur atoms (1 mole of sulfur).

• An example of stoichiometry calculations Calculate how many grams of water and sulfur trioxide is needed to produce 100g of sulfuric acid according to the following chemical reaction:

	SO ₃	H ₂ O	H₂SO
Molecular weight	80	18	98 🖤
Molar weight	80	18	98
(g/mole)			
Coefficients	1	1	1
(moles reacting)			
Known	?	?	100g
Number of moles	1.02	1.02	100/98 = 1.02
to obtain the			
product and			
needed of			
reagents			
Mass needed (g)	1.02(mole)x80(g/mole)=81.6(g)	1.02(mole)x18(g/mole)=18.36 (g)	

If the coefficients of the reactions were different from 1 you must calculate the number of moles of the reactants needed for a given number of moles of the product. For example, in the following reaction of S and O₂, 2 moles of S reacts with 3 moles of O₂ to produce 2 moles of SO₃. Molar ration of S:O₂:SO₃ 2:3:2. To obtain 1 mole of SO₃ you need 1 mole of S and 3/2 moles of O₂. If you want to get 10 moles of SO₃ you will take 10 moles of sulfur and 15 moles of oxygen gas.

 $2S + 3O_2 \rightarrow 2SO_3$

• Calculations involving Moles and Masses

1. Coefficients in a chemical reaction indicate the molar ratio of reactants and products.

2. Work out the number of moles of anything you can.

3. Convert moles to the mass using n=m/M formula.

4. If a reactant is **in excess**, its mass **is not used** to determine product masses. The **limiting reactant** (completely consumed in the reaction) determines the mass of products. (if you need to find the limiting reactant, divide the number of moles of each reactant by its coefficient. The smallest number will give you the limiting reactant).

Example: $2H_2 + O_2 \rightarrow 2H_2O$ look at the coefficient, molar ratio $H_2:O_2:H_2O - 2:1:2$

If we want the hydrogen and oxygen to react with each other completely and exactly we need to figure out the masses of H_2 and O_2 that correspond to the given ratio (2:1)

	H ₂	02	H ₂ O
moles	2	1	2
Masses,g	2molx2gmol ⁻¹ =4g	1molx32gmol ⁻¹ =32g	2molx18gmol ⁻¹ =36g
moles	20	10	20
Masses,g	40	320	360
moles	0.2	0.1	0.2
Masses,g	0.4	0.32	0.36

If we have 4g of hydrogen gas and 40 g of oxygen gas, we will have oxygen in excess, it will not be completely consumed in the reaction. In order to calculate the mass of water produced, we will use the information about hydrogen gas (4g) and ignore oxygen for our calculations. Remember, number of moles=mass/molar mass.

Look careful at our calculation from the class:

(n = m) n = number of moles
m - nass is praiss
M - Molar mass,
$$p \mod 1$$

Calculate the number of moles of
mapnesium atoms in 10g of mapnegium.
n = $\frac{100}{24.31}$ pimol⁻¹ = 0.4110mo/
m = n.M
Calculate the mass of 0.3800 mol
CH₃COOH:
M = 12.2 + 16.2 + 4 = 24 + 32 + 4 =
= 60 m = M.n
m = 60 x 0.38 = 21.828

,

(a) $\begin{pmatrix} 2C_4H_{10} & 4/30_2 \end{pmatrix} \rightarrow \begin{pmatrix} 8C0 \\ 130_2 \end{pmatrix} \rightarrow \begin{pmatrix} 8C0 \\ 10H_{20} \end{pmatrix} + 10H_{20} \end{pmatrix}$ (0.00) of butance reacts exactly with 35.78) of oxygen to produce 30.28 f of carbon dioxide - what man of worder was produced? readach $\begin{pmatrix} 0.00 \\ 0.00 \\ 15.78 \end{pmatrix} = \begin{pmatrix} 45.78 \\ 15.78 \\ 15.78 \end{pmatrix} = \begin{pmatrix} 45.78 \\ 15.50 \\ 15.50 \end{pmatrix}$ H20? $\begin{pmatrix} 45.78 \\ 15.78 \end{pmatrix} - 30.28 = \begin{pmatrix} 5.50 \\ 15.50 \\ 15.50 \\ 15.50 \end{pmatrix}$ Law of conservation of mass. In this care mass of the reactants = the man of products.

Questions

- 1. $4Na + O_2 \rightarrow 2Na_2O$ Figure out the mass of sodium in grams that will react exactly with 3.2 g of oxygen gas.
- 2. How many moles of hydrogen gas are produced when 0.4 mol of sodium react with excess of water

 $2Na + 2H_2O \rightarrow 2NaOH + H_2$

3. How many moles of O₂ react with 0.01 mol C₃H₈?

 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

4. Calculate the mass of arsenic(III) chloride produced when 0.15 g of arsenic reacts with excess chlorine
 2As + 3Cl₂ → 2AsCl₃