
Homework 2

1. For the last two weeks, we discussed:
a. Binary Search Trees

i. Creation
ii. Search - O(n) worst case, O(log n) or O(Height) usually
iii. Insertion (smaller numbers to the left, greater to the right)
iv. Deletions

1. Leaf
2. Parent node (replace with right, all the way to the left)

b. Problems with Binary trees and introduction to Balanced Search Trees
c. Converting to a Balanced tree using an intermediate sorted list
d. Introduction to 2-3 trees

i. 2 node, 3 node
ii. Insertions

1. 2 node
2. 3 node
3. 3 node with a 3 node parent

If you missed either week, you can review the material here (ignore the java code):
https://algs4.cs.princeton.edu/32bst/ for Binary Search Trees and
https://algs4.cs.princeton.edu/33balanced/ for Balanced Search Trees (up to and including the
section called “Splitting the root.”

For homework,
1. Try and implement the:

a. creation and insertion into a binary tree. You will need to implement a class
Node that holds a value, and a left and right pointer that also points to null or
another Node.

b. Try to implement a search function in the class as well
Try and accomplish this for the weekend after Thanksgiving Break

2. AFTER reading the section on 2-3 trees, on paper:
a. Create a balanced binary tree with the letters in “school nova at stony brook”

(eliminate duplicates). Hint: create a sorted list first
b. Convert this to a perfectly balanced 2-3 tree
c. Insert the values d, u and y, maintaining a balanced 2-3 tree

https://algs4.cs.princeton.edu/32bst/
https://algs4.cs.princeton.edu/33balanced/


Node:
data
left
right

insert(root, value):
if root is null:

create new node with value
return new node

else if value < root.data:
root.left = insert(root.left, value)

else:
root.right = insert(root.right, value)

return root

search(root, value):
if root is null or root.data == value:

return root
else if value < root.data:

return search(root.left, value)
else:

return search(root.right, value)

HW Policy:
As mentioned in class there are plenty of sites on the internet (including generative AI tools)
with descriptions of the algorithms, and in many cases, the solutions to this problem. To
maximize learning, feel free to use resources to review the material discussed in class, but
attempt to write the code on your own. The exercises will strengthen your understanding of the
material, and Python in general.


