Calculate.
$4 \mathrm{~m} 2 \mathrm{dm} 6 \mathrm{~cm}+1 \mathrm{~m} 5 \mathrm{dm} 2 \mathrm{~cm}=\ldots \mathrm{m} \ldots \mathrm{dm} \ldots \mathrm{cm}$
$9 \mathrm{~m} 8 \mathrm{dm} 3 \mathrm{~cm}-6 \mathrm{~m} 2 \mathrm{dm} 1 \mathrm{~cm}=$ \qquad m \qquad dm \qquad cm

Find the perimeter and the area of the following shapes. Try to use the most optimal way to calculate. Show your work.

Perimeter $=$ \qquad
Area $=$ \qquad

Perimeter $=$ \qquad
Area $=$ \qquad

Connect the names with the appropriate drawings.

Straight line $\overleftrightarrow{\boldsymbol{A B}}$

Ray $\stackrel{\rightharpoonup \boldsymbol{A B}}{ }$

Use a ruler.
a) Plot straight line $\overleftrightarrow{N Q}$
. T
b) Plot ray $\overrightarrow{R T}$
c) Label the intersection \mathbf{M}.
d) Plot segment $\overline{M F}$.

5 Use a ruler and a compass. Draw a line segment $\overline{A B}$, place a point C on the segment between points A and B. Write down the name of each line segment you get. Place another point D and E on the same distance from point C (use a compass to put points D and E in the same distance from point C - any distance of your choice). Point D should be between points A and C , point E should be between points C and B. between Name all line segments you get.

a) Draw a line segment $\overline{A B}$.

Draw another line segment $\overline{C D}$ in a way that the intersection between $\overline{A B}$ and $\overline{C D}$ is a point K .
b) Draw a line segment $\overline{A B}$ again below. Draw another line segment $\overline{E F}$ in a way that the intersection between $\overline{A B}$ and $\overline{E F}$ is a line segment $\overline{E B}$.

7 Interior and Exterior of an Angle. Does point P belong to an $\angle A C B$? \qquad Does a segment $\overline{A B}$ belong to an $\angle A C B$? \qquad

Do all points of a ray $\overrightarrow{B A}$ belong to the $\angle A C B$? \qquad
a) Take a blue pencil and follow the part of the ray $\overrightarrow{B A}$ which is inside the angle $\angle A C B$
b) Take a green pencil and follow the part of the ray $\overrightarrow{B A}$ which is outside the angle $\angle A C B$

9 Use a compass and the ruler to find a midpoint between points A and D.

10 Practice to draw concentric circles. Place a point \mathbf{A} in the middle of the page. Using a compass, draw 3 circles - with a radius $7 \mathrm{~cm}, 5 \mathrm{~cm}$ and 3 cm with the center at point A. Name each circle.

11
The $\angle A C B$ is 43°. How big (in degrees) will be a complementary angle? How big (in degrees) will be a supplementary angle?

Complementary angle $=$ \qquad supplementary angle $=$ \qquad

The square with a side equal to 1 m cut down on the smaller squares with a side of 1 cm . Then all small squares are put along the straight line one by one. The width equals to 1 cm . what the length is going to be?

13 Write down the expressions instead of word sentences:
a) the sum of 29 and 2 is greater than A \qquad
b) B is greater than the difference between 20 and 5 \qquad
c) C is equal to the sum of 11,32 and 40
d) the difference between 100 and D is less than E \qquad

14 Calculate in columns:
$1230+805+39=\quad 1230-805=\quad 1230 \times 39=$

15 a) Imagine that you have 5 cards, and each card has a different number on it. If the cards only have odd numbers, what computations must you do to get an even result?
b) If the cards only have even numbers, is it possible to get an odd result? What computations must you do to get an odd result? Hint: Consider all 4 types of calculations you know (addition, subtraction, multiplication and division).

16 The shapes below are made with toothpicks and gumdrops. For example, stage 2 has 5 toothpicks and 4 gumdrops.
a) Look at the pattern and then draw stage 5. For later stages, make a drawing if it helps you answer the questions.

stage 1

stage 2

stage 3

stage 4
stage 5
b) How many toothpicks are there at stage 5?
c) How many gumdrops are there at stage 5 ?
d) Complete the table to show the number of toothpicks and gumdrops for stages 1 through 8 .

stage	1	2	3	4	5	6	7	8
number of toothpicks		5						
number of gumdrops		4						

17 A dozen eggs will make four omelets. How many eggs are needed to make?
a. 8 omelets? \qquad
b. 1 omelet? \qquad
c. 9 omelets? \qquad
How many omelets can be made from?
d) 2 dozen eggs? \qquad
e) 9 eggs? \qquad
f) 21 eggs? \qquad

18
Find the sum by the most optimal way:
a) $3+6+9+12+15+18+21=$ \qquad
b) $2+4+6+\ldots+48=$ \qquad

Simplify fractions (reduce fractions to the lowest terms):
19
$\frac{6}{8}=\frac{\square}{\square}$
$\frac{24}{32}=\frac{\square}{\square}$
$\frac{27}{9}=\frac{\square}{\square}$
$\frac{4}{8}=\frac{\square}{\square}$
$\frac{5}{15}=\frac{\square}{\square}$
$\frac{14}{21}=\frac{\square}{\square}$
$\frac{8}{32}=\frac{\square}{\square}$
$\frac{60}{90}=\frac{\square}{\square}$
$\frac{8}{16}=\frac{\square}{\square}$
$\frac{30}{50}=\frac{\square}{\square}$
$\frac{7}{28}=\frac{\square}{\square}$
$\frac{3}{9}=\frac{\square}{\square}$

Use $\}$ to list the elements of the sets A, B, and C and their intersections according to a Venn Diagram for these sets.
A =
B =
$\mathrm{C}=$
$\mathrm{A} \cap \mathrm{B}=$
$A \cap C=$
$\mathrm{B} \cap \mathrm{C}=$

21 Open the parentheses, collect the like items and simplify the expressions.
a) $126+62+(\mathrm{a}-2 \mathrm{~b}-32)+2 \mathrm{a}-\mathrm{b}=$ \qquad
b) $850-2 \mathrm{~b}-(3 \mathrm{a}+2 \mathrm{~b})+(\mathrm{a}+\mathrm{b})-200=$ \qquad

