Math 3 Classwork 14

Warm-Up

1 Write the missing numbers to make the equations correct:
$12 \times$ \qquad $=$ \qquad $\times 10$ \qquad
\qquad $\times 10$
\qquad $\times 8=$ \qquad $\times 12$
\qquad $\times 8=$ \qquad $\times 10$
\qquad $\times 6=$ \qquad $\times 3$
\qquad $\times 2=$ \qquad $\times 4=$ \qquad $\times 8$

2 Solve equations and check your answer:
a) $14+x=26$
b) $x-18=33$
c) $89-a=71$
\qquad
\qquad
\qquad
3 Compare expressions (<,>, =):

$$
\begin{array}{ll}
7 \times 5 \ldots 6 \times 8 & 12+12+12 \ldots 12 \times 4 \\
3 \times 9 \ldots 5 \times 5 & 4 \times 6 \ldots 3 \times 8 \\
5 \times 9 \ldots 5 \times 5+5 & 10 \times 3 \ldots 5 \times 5+5 \\
3 \times 9 \ldots 4 \times 7+2 & 15+15+15 \ldots 10 \times 5-5
\end{array}
$$

4 Answer the questions (mental math):
a) How many threes should be subtracted from 15 so the result is 0 ? \qquad
b) How many fours should be subtracted from 24 so the result is 0 ? \qquad
c) Six tens are subtracted from the number and the result is 2 . What is the number?
d) Eight threes are subtracted from the number and the result is 1 . What is the number? \qquad

5 Evaluate an expression $9 \times a+3$ for each value of a :
$a=9$
$a=5$
$a=20$
\qquad
\qquad
\qquad

6
Simplify each expression below:
$a+11+14=$
$18+b+20=$
$c+12+c=$
$p+10-50=$
$18+l-l=$
$m+m+k+k=$

New Material I

Using a compass

A compass is a handy drawing tool to have around. Use it to draw circles, make equal size line segments or find the midpoint of a line.
8.

Use a compass to find a point A on the other side of the angle so that point A will be on the same distance from the vertex of the angle $-B$, as point C is.

9. Use a compass and a straightedge (ruler) to construct a line segment which is
a) The sum of the segments a and b.
\qquad
b) The difference of those segments.

10 Let's learn how to build a symmetrical hexagon using a compass and a straight edge only!

a) Use a compass to draw a circle centered at a given point \mathbf{A} and passing through another point \mathbf{B} (choose your own compass opening).
b) Place your compass with the same radius setting at the point \mathbf{B} and make a mark on a circle on either side of point \mathbf{B}. Mark this point with a letter C
c) Place your compass with the same radius setting at the point \mathbf{C} and make a mark on a circle going in the same direction as you did in step b). Mark this point with a letter \mathbf{D}.
d) Repeat step c) three more times or until you will come back to a point \mathbf{B}.
e) Take a straight edge and connect each point with two neighboring points.
f) Using a straight edge connect each point with a center of your initial circle - point A.

- \mathbf{A}

Questions: 1. If we set the distance between point A (center of the circle) and point B to be 1 unit, what is the distance AC? \qquad AD? \qquad .
2. What can you tell about the 6 angles, between segments connecting center of the circle A with points $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}-\angle \mathrm{BAC}, \angle \mathrm{CAD}, \angle \mathrm{DAE}, \angle \mathrm{EAF}, \angle \mathrm{FAG}$ and $\angle \mathrm{GAB}$?
3. Can you tell the measure of each angle in degrees, if we know that the full angle is 360° ?

New Material II

Multiplying Bigger Numbers:

When multiplying by two-digit number,

We can use a "partial products" method.
CALCULATE: 179×64
Here is the answer using the partial products algorithm:
Here is a rectangle with side lengths $100+70+9$ and $60+4$ that shows all the partial products as the area of part of the rectangle:

60 | 100 | 70 | 9 |
| :---: | :---: | :---: |
| $60 \times 100=$ | $60 \times 70=$ | $60 \times 9=$ |
| 6,000 | 4,200 | 540 |
| $4 \times 100=$ | $4 \times 70=$ | $4 \times 9=$ |
| 400 | 280 | 36 |

$9 \times 4=\quad 36$
$70 \times 4=280$
$100 \times 4=400$
$9 \times 60=540$
$70 \times 60=4200$
$100 \times 60=+6000$
11,456

Multiply:

