Multiplication by 0 and 1. Patterns in Multiplication table.
Branching Algorithm.

Math 2 Classwork 17

Warm Up

Write down as an algebraic expression:
a) The "sum of 12 and x ": \qquad
b) " 5 less than x ": \qquad
c) The" difference of 10 and x ": \qquad
d) The " 20 more than x " \qquad
2 Compare using >, <, or $=$

$$
\begin{array}{lll}
4 \times 2 \ldots 14+14 & 10 \times 17 \ldots 17 \times 9 & 35 \times 1 \ldots 35 \times 2 \\
5 \times 2 \ldots 5 \times 2 \times 2 & 11+11+11 \ldots 11 \times 7 & 4 \times 5 \ldots 2 \times 10 \\
3 \times 6 \ldots 2 \times 9 & 6+6+6+6 \ldots 2 \times 12 & 9 \times 4 \ldots 7 \times 4
\end{array}
$$

3 Calculate without removing parentheses:
a) $14-(4-1)=$ \qquad $208-(100+8)=$ \qquad
$444-(44+400)=$ \qquad
b) Now remove parenthesis and calculate:
$14-(4-1)=$ \qquad
$208-(100+8)=$ \qquad
$444-(44+400)=$ \qquad
Solve the equations and check the answers.
$563+x=709$
$x+714=851$
$852-z=34$
$x=$ \qquad $x=$ \qquad
$z=$ \qquad

Homework Review

Rewrite the expressions below replacing addition with multiplication where possible.
a) $2+2+2+2+2+5=$ \qquad
b) $5+5+5+5+4=$ \qquad
c) $3+3+3+3+3+3+6=$ \qquad
d) $7+7+7+3=$ \qquad

6 The rectangle below is divided into 7 squares. Find a perimeter of the rectangle if the side of shaded square is 2 cm .

Find the length and width of the rectangle first.
Length $=$ \qquad
Width $=$ \qquad

Perimeter $=$

New Material I

The "equal groups" (arrays) thinking about multiplication.
The equal groups are a way of thinking, whereas repeated addition is a way of doing.

Example: $5 \times 7=7 \times 5=7+7+7+7+7=5+5+5+5+5+5+5$

Thus, 5 groups of 7 is the same as 7 groups of 5 , so $5 \times 7=7 \times 5$.

7 a) Perform the following operations and write their results:
$1 \times 2=$ \qquad
$1 \times 3=$ \qquad
$1 \times 6=$ \qquad
b) Perform the following operations and write their results:
$0 \times 2=$ \qquad
$0 \times 3=$ \qquad
$0 \times 6=$ \qquad

Conclusion: $1 \times a=$ \qquad or one group of \boldsymbol{a} equals \boldsymbol{a}

The Commutative property of addition says changing the order of the numbers we are adding, does not change the sum.

Remember, when we add:
$6+3$
$3+6$

The Commutative property of multiplication says that the order in which we multiply numbers does not change the product.

When we multiply: $\mathbf{a} \times \mathbf{b}=\mathbf{b} \times \mathbf{a}$

2×4
4×2
a) Use the commutative property of multiplication to evaluate the expressions:
$3 \times 1=1 \times 3=$ \qquad Conclusion: $\boldsymbol{a} \times 1=$ \qquad
$5 \times 1=1 \times 5=$ \qquad or \boldsymbol{a} groups of one equals \boldsymbol{a}.
$7 \times 1=\times=$ \qquad
$9 \times 1=\times=$ \qquad
b) Use the commutative property of multiplication to evaluate the expressions:
$3 \times 0=0 \times 3=$ \qquad
$5 \times 0=0 \times 5=$ \qquad
$7 \times 0=$ \qquad $=$

Conclusion: $\boldsymbol{a} \times 0=$ \qquad or \boldsymbol{a} group of zeros equals $\boldsymbol{0}$.

Patterns in Multiplication Table.

Pattern in math is an ordered set of numbers, shapes, or other mathematical objects, arranged according to a rule.

Q1: Find all multiples of 2 in the multiplication table. What do those numbers have in the one's place? \qquad
Q2: Find all multiples of 4 in the multiplication table. What do those numbers have in the one's place? \qquad Is there any connection to the multiples of 2 ?
Q3: Find all multiples of 5 in the multiplication table. What do those numbers have in the one's place? \qquad What is the pattern in the ten's place? \qquad
Q4: Look at the darker shaded section of the multiplication table (right of the diagonal) and on the lighter shaded section (left of the diagonal). What do you notice? Can the multiplication table be drawn in the form of a triangle?

x	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
3	3	6	9	12	15	18	21	24	27	30
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50
6	6	12	18	24	30	36	42	48	54	60
7	7	14	21	28	35	42	49	56	63	70
8	8	16	24	32	40	48	56	64	72	80
9	9	18	27	36	45	54	63	72	81	90
10	10	20	30	40	50	60	70	80	90	100

New Material II

Three important characteristics of the algorithm:

- It should be finite: If your algorithm never ends when you try to solve a problem, then it is useless.
- It should have well defined instructions: Each step of the algorithm has to be precisely defined; the instructions should be unambiguously specified for each case.
- It should be effective: The algorithm should solve the problem it was designed to solve in the most optimal way.

Branching Algorithms

10 In a $1^{\text {st }}$ box write any number between 10 and 20 in the square. Then, do the calculations according to the algorithm.

Which of those algorithms are linear, or branching, or cyclic? Find the value of \boldsymbol{x} for every \boldsymbol{a}
11 by following each algorithm.

a	3	9	15
x			

a	3	9	15
x			

a	3	9	15
x			

