MATH 10

ASSIGNMENT 23: SIGN OF A PERMUTATION

APRIL 7, 2024

Definition. Let f be a permutation of $\{1, \ldots, n\}$. An disorder for f is a pair i, j such that $i<j$ but $f(i)>f(j)$. For example, for permutation

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 3 & 1
\end{array}\right)
$$

there are 4 disorders: $(1,2),(1,3),(1,4),(3,4)$.
A sign of a permutation is defined by

$$
\operatorname{sgn}(f)=(-1)^{\# \text { of disorders }}
$$

thus, $\operatorname{sgn}(f)=+1$ if the number of disorders is even (such permutations are called even), and $\operatorname{sgn}(f)=-1$ if the number of disorders is odd (such permutations are called odd).

1. Is the cycle of length n even or odd?
2. For any permutation $s \in S_{n}$ and a polynomial p in variables x_{1}, \ldots, x_{n}, we can define new polynomial $s(p)$ by permuting x_{1}, \ldots, x_{n} using s. For example, if $p=x_{1}^{2}+2 x_{2}+x_{1} x_{3}$, and $s=(12)$, then $s(p)=x_{2}^{2}+2 x_{1}+x_{2} x_{3}$.
(a) Show that for the polynomial in 3 variables $p=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)$, and any permutation s, we have $s(p)=\operatorname{sgn}(s) \cdot p$.
(b) Can you construct a polynomial p in n variables such that $s(p)=\operatorname{sgn}(s) \cdot p$ for any permutation $s \in S_{n}$?
3. (a) Show that if $s \in S_{n}$ is even (respectively odd) then $(i i+1) \circ s$ is odd (respectively, even). Here $(i i+1)$ is a transposition which exchanges numbers i and $i+1$. [Hint: this transposition changes the order of exactly one pair.]
(b) Show that if s is even (respectively odd) and τ is any transposition, then $\tau \circ s$ is odd (respectively, even).
(c) Show that s is even if and only if it can be written as a product of even number of transpositions.
4. Show that for any permutations $s, t \in S_{n}$, we have $\operatorname{sgn}(s t)=\operatorname{sgn}(s) \operatorname{sgn}(t)$.
