MATH 10

ASSIGNMENT 5: DOT PRODUCTS

OCTOBER 22,2023

Dot Product

By the Pythageorean theorem, for a vector $\mathbf{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$, its length is given by $\sqrt{x^{2}+y^{2}+z^{2}}$. It is common to denote the length of a vector \mathbf{v} by $|\mathbf{v}|$:

$$
|\mathbf{v}|=\sqrt{x^{2}+y^{2}+z^{2}}
$$

A convenient tool for computing lengths is the notion of the dot product. The dot product of two vectors is a number (not a vector!) defined by

$$
\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right]=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}
$$

The dot product has the following properties:

1. It is symmetric: $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$
2. It is linear as function of \mathbf{v}, \mathbf{w} :

$$
\begin{aligned}
& \left(\mathbf{v}_{1}+\mathbf{v}_{2}\right) \cdot \mathbf{w}=\mathbf{v}_{1} \cdot \mathbf{w}+\mathbf{v}_{2} \cdot \mathbf{w} \\
& (c \mathbf{v}) \cdot \mathbf{w}=c(\mathbf{v} \cdot \mathbf{w})
\end{aligned}
$$

3. $\mathbf{v} \bullet \mathbf{v}=|\mathbf{v}|^{2}$, or, equivalently, $|\mathbf{v}|=\sqrt{\mathbf{v} \cdot \mathbf{v}}$
4. Vectors \mathbf{v}, \mathbf{w} are perpendicular iff $\mathbf{v} \cdot \mathbf{w}=0$.

The first three properties are immediate from the definition. The last one follows from the Pythagorean theorem: if $\mathbf{v} \perp \mathbf{w}$, then by Pythagorean theorem, $|\mathbf{v}|^{2}+|\mathbf{w}|^{2}=|\mathbf{v}-\mathbf{w}|^{2}=(\mathbf{v}-\mathbf{w}) \cdot(\mathbf{v}-\mathbf{w})=\mathbf{v} \cdot \mathbf{v}+\mathbf{w} \cdot \mathbf{w}-$ $2 \mathrm{v} \cdot \mathrm{w}$.

From these properties one easily gets the following important result:

Theorem.

$$
\mathbf{v} \cdot \mathbf{w}=\mathbf{v} \cdot \mathbf{w}^{\prime}=|\mathbf{v}| \cdot|\mathbf{w}| \cos \varphi
$$

where φ is the angle between vectors \mathbf{v}, \mathbf{w}, and \mathbf{w}^{\prime} is projection of \mathbf{w} onto \mathbf{v}. It can be defined by saying that $\mathbf{w}=\mathbf{w}^{\prime}+\mathbf{w}^{\prime \prime}$, and vector \mathbf{w}^{\prime} is a multiple of $\mathbf{v}, \mathbf{w}^{\prime \prime}$ is perpendicular to \mathbf{v} :

This theorem is commonly used to find the angle between two vectors:

$$
\cos \varphi=\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}| \cdot|\mathbf{w}|}
$$

Homework

In all the questions where they ask you to find an angle, an answer like $\sin ^{-1}(1 / 3)$ is perfectly acceptable - you do not have to compute approximate value. However, if there is a way to simplify the answer, please do it (e.g. simplifying $\sin ^{-1}(1 / 2)$ to $\pi / 6=30^{\circ}$).

1. Prove that the triangle with vertices at $A(3,0), B(1,5)$, and $C(2,1)$ is obtuse. Find the cosine of the obtuse angle.
2. Prove the law of cosines: in a triangle $\triangle A B C$, with sides $A B=c, A C=b, B C=a$, one has $c^{2}=a^{2}+b^{2}-2 a b \cos \angle C$. [Hint: $c^{2}=\overrightarrow{A B} \cdot \overrightarrow{A B}$, and $\overrightarrow{A B}=\overrightarrow{C B}-\overrightarrow{C A}$.]
3. (a) Let \mathbf{v}, \mathbf{w} be two vectors in the plane. Show that if $|\mathbf{v}|=|\mathbf{w}|$, then $(\mathbf{v}-\mathbf{w}) \cdot(\mathbf{v}+\mathbf{w})=0$.
(b) Use the previous part to show that the two diagonals of a rhombus are perpendicular.
4. On the sides of a square $M N P Q$, with side 1 , the points A and B are taken so that $A \in N P$, $N A=\frac{1}{2}, B \in P Q$, and $Q B=\frac{1}{3}$. Prove that $\angle A M B=45^{\circ}$.

5. Use dot product to find the angle between two diagonals of a unit cube. (You will need to first write each diagonal in coordinates, as a vector.)
6. A billiard ball traveling with velocity \vec{v} hits another ball which was at rest. After the collision, balls move with velocities \vec{v}_{1}, \vec{v}_{2}. Prove that $\vec{v}_{1} \perp \vec{v}_{2}$, using the following conservation laws (m is the mass of each ball which is supposed to be the same)

Momentum conservation: $m \vec{v}=m \vec{v}_{1}+m \vec{v}_{2}$
Energy conservation: $\frac{m|\vec{v}|^{2}}{2}=\frac{m\left|\vec{v}_{1}\right|^{2}}{2}+\frac{m\left|\vec{v}_{2}\right|^{2}}{2}$
7. Consider the plane given by equation $a x+b y+c z=d$.
(a) Let $P_{1}=\left(x_{1}, y_{1}, z_{1}\right), P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ be two points on this plane. Prove that then

$$
a\left(x_{1}-x_{2}\right)+b\left(y_{1}-y_{2}\right)+c\left(z_{1}-z_{2}\right)=0 .
$$

(b) Prove that ${\overrightarrow{P_{1} P}}_{2}$ is perpendicular to vector $\mathbf{v}=(a, b, c)$.
(In such a situation - when any vector contained in the plane is perpendicular to \mathbf{v} - we say the plane is perpendicular to \mathbf{v}.)

