MATH 10

ASSIGNMENT 3: COMPLEX NUMBERS: DE MOIVRE FORMULA

OCT 1, 2023

Magnitude and argument of a complex number

The magnitude of a complex numbers z=a+bi is $|z|=\sqrt{z\overline{z}}=\sqrt{a^2+b^2}$; geometrically it is the length of vector z=(a,b). If $z\neq 0$, its argument arg z is defined to be the angle between the positive part of x-axis and the vector z measured counterclockwise. Thus, instead of describing a complex number by its coordinates $a=\mathrm{Re}(z),\ b=\mathrm{Im}(z)$ we can describe it by its magnitude r=|z| and argument $\varphi=\mathrm{arg}(z)$:

Relation between r, φ and a = Re(z), b = Im(z) is given by

$$a = r\cos(\varphi),$$
 $b = r\sin(\varphi)$
 $z = a + bi = r(\cos(\varphi) + i\sin(\varphi))$

Thus, one can write the complex number with magnitude r and argument φ as

$$z = r(\cos\varphi + i\sin\varphi).$$

GEOMETRIC MEANING OF MULTIPLICATION

Theorem.

1. If z is a complex number with magnitude 1 and argument φ , then multiplication by z is rotation by angle φ :

$$z \cdot w = R_{\omega}(w)$$

where R_{φ} is operation of counterclockwise rotation by angle φ around the origin.

2. If z is a complex number with absolute value r and argument φ , then multiplication by z is rotation by angle φ and rescaling by factor r:

$$z \cdot w = rR_{\varphi}(w)$$

Addition of argument

Theorem. When we multiply two complex numbers, magnitudes multiply and arguments add:

$$|z_1 z_2| = |z_1| \cdot |z_2|, \quad \arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \mod 360^{\circ}$$

Similarly,

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}, \quad \arg(\frac{z_1}{z_2}) = \arg(z_1) - \arg(z_2) \mod 360^{\circ}$$

In particular, this implies that if $z = r(\cos \varphi + i \sin \varphi)$, then

$$z^n = r^n(\cos(n\varphi) + i\sin(n\varphi))$$

This is known as De Moivre's formula.

Homework

- 1. Show that
 - (a) $|\overline{z}| = |z|$, $\arg(\overline{z}) = -\arg(z)$
 - (b) Show that $\frac{\overline{z}}{z}$ has magnitude one. What is its argument if argument of z is φ ?
 - (c) Check part (b) for z = 1 + i by explicit calculation.
- **2.** If z has magnitude 2 and argument $3\pi/2$, and w has magnitude 3 and argument $\pi/3$, what will be the magnitude and argument of zw? Can you write it in the form a + bi?
- 3. Which transformations of the complex plane are given by the formulas

(a)
$$z \to iz$$
 (b) $z \to (1 + i\sqrt{3})z$ (c) $z \to \frac{z}{1+i}$
(d) $z \to \frac{z+\overline{z}}{2}$ (e) $z \to (1-2i+z)$ (f) $z \to \frac{z}{|z|}$
(g) $z \to i\overline{z}$ (h) $z \to -\overline{z}$

Draw the image of the square $0 \le \text{Re } z \le 1$, $0 \le \text{Im } z \le 1$ under each of these transformations.

- **4.** Let p(x) be a polynomial with real coefficients.
 - (a) Show that for any **complex** z, we have $\overline{p(z)} = p(\overline{z})$.
 - (b) Show that if z is a complex root of p, i.e. p(z) = 0, then \overline{z} is also a root.
 - (c) Show that if p(z) has odd degree and completely factors over \mathbb{C} (i.e. has as many roots as is its degree), then it must have at least one real root.
- **5.** Consider the equation $x^3 4x^2 + 6x 4 = 0$.
 - (a) Solve this equation (hint: one of the roots is an integer).
 - (b) Find the sum and product of the roots in two ways: by using Vieta formulas and by explicit computation. Check that the results match.
- **6.** Using the argument addition rule, derive a formula for $\cos(\varphi_1 + \varphi_2)$, $\sin(\varphi_1 + \varphi_2)$ in terms of sin and \cos of φ_1, φ_2 . [Hint: let $z_1 = \cos \varphi_1 + i \sin \varphi_1$, $z_2 = \cos \varphi_2 + i \sin \varphi_2$; then $z_1 z_2 = ?$]
- 7. Compute

$$(3+4i)^{-1}$$
, $(1-i)^{12}$, $(1-i)^{-12}$, $\left(\frac{1+i}{1-i}\right)^{2024}$, $(i\sqrt{3}-1)^{17}$

- **8.** Using de Moivre's formula, write a formula for $\cos(3\varphi)$, $\sin(3\varphi)$ in terms of $\sin\varphi$, $\cos\varphi$.
- *9. Compute $1 + \cos \varphi + \cos 2\varphi + \cdots + \cos n\varphi$. [Hint: if $z = \cos \varphi + i \sin \varphi$, what is $1 + z + z^2 + \cdots + z^n$?]