MATH 10

ASSIGNMENT 3: COMPLEX NUMBERS: DE MOIVRE FORMULA

OCT 1, 2023

Magnitude and argument of a complex number

The magnitude of a complex numbers $z=a+b i$ is $|z|=\sqrt{z \bar{z}}=\sqrt{a^{2}+b^{2}}$; geometrically it is the length of vector $z=(a, b)$. If $z \neq 0$, its argument $\arg z$ is defined to be the angle between the positive part of x-axis and the vector z measured counterclockwise. Thus, instead of describing a complex number by its coordinates $a=\operatorname{Re}(z), b=\operatorname{Im}(z)$ we can describe it by its magnitude $r=|z|$ and $\operatorname{argument} \varphi=\arg (z)$:

Relation between r, φ and $a=\operatorname{Re}(z), b=\operatorname{Im}(z)$ is given by

$$
\begin{aligned}
& a=r \cos (\varphi), \quad b=r \sin (\varphi) \\
& z=a+b i=r(\cos (\varphi)+i \sin (\varphi))
\end{aligned}
$$

Thus, one can write the complex number with magnitude r and $\operatorname{argument} \varphi$ as

$$
z=r(\cos \varphi+i \sin \varphi)
$$

Geometric meaning of multiplication

Theorem.

1. If z is a complex number with magnitude 1 and argument φ, then multiplication by z is rotation by angle φ :

$$
z \cdot w=R_{\varphi}(w)
$$

where R_{φ} is operation of counterclockwise rotation by angle φ around the origin.
2. If z is a complex number with absolute value r and argument φ, then multiplication by z is rotation by angle φ and rescaling by factor r :

$$
z \cdot w=r R_{\varphi}(w)
$$

Addition of Argument

Theorem. When we multiply two complex numbers, magnitudes multiply and arguments add:

$$
\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|, \quad \arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right) \bmod 360^{\circ}
$$

Similarly,

$$
\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}, \quad \arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right) \quad \bmod 360^{\circ}
$$

In particular, this implies that if $z=r(\cos \varphi+i \sin \varphi)$, then

$$
z^{n}=r^{n}(\cos (n \varphi)+i \sin (n \varphi))
$$

This is known as De Moivre's formula.

Homework

1. Show that
(a) $|\bar{z}|=|z|, \arg (\bar{z})=-\arg (z)$
(b) Show that $\frac{\bar{z}}{z}$ has magnitude one. What is its argument if argument of z is φ ?
(c) Check part (b) for $z=1+i$ by explicit calculation.
2. If z has magnitude 2 and argument $3 \pi / 2$, and w has magnitude 3 and argument $\pi / 3$, what will be the magnitude and argument of $z w$? Can you write it in the form $a+b i$?
3. Which transformations of the complex plane are given by the formulas
(a) $z \rightarrow i z$
(b) $z \rightarrow(1+i \sqrt{3}) z$
(c) $z \rightarrow \frac{z}{1+i}$
(d) $z \rightarrow \frac{z+\bar{z}}{2}$
(e) $z \rightarrow(1-2 i+z)$
(f) $z \rightarrow \frac{z}{|z|}$
(g) $z \rightarrow i \bar{z}$
(h) $z \rightarrow-\bar{z}$

Draw the image of the square $0 \leq \operatorname{Re} z \leq 1,0 \leq \operatorname{Im} z \leq 1$ under each of these transformations.
4. Let $p(x)$ be a polynomial with real coefficients.
(a) Show that for any complex z, we have $\overline{p(z)}=p(\bar{z})$.
(b) Show that if z is a complex root of p, i.e. $p(z)=0$, then \bar{z} is also a root.
(c) Show that if $p(z)$ has odd degree and completely factors over \mathbb{C} (i.e. has as many roots as is its degree), then it must have at least one real root.
5. Consider the equation $x^{3}-4 x^{2}+6 x-4=0$.
(a) Solve this equation (hint: one of the roots is an integer).
(b) Find the sum and product of the roots in two ways: by using Vieta formulas and by explicit computation. Check that the results match.
6. Using the argument addition rule, derive a formula for $\cos \left(\varphi_{1}+\varphi_{2}\right), \sin \left(\varphi_{1}+\varphi_{2}\right)$ in terms of sin and \cos of φ_{1}, φ_{2}. [Hint: let $z_{1}=\cos \varphi_{1}+i \sin \varphi_{1}, z_{2}=\cos \varphi_{2}+i \sin \varphi_{2}$; then $z_{1} z_{2}=$?]
7. Compute

$$
(3+4 i)^{-1}, \quad(1-i)^{12}, \quad(1-i)^{-12}, \quad\left(\frac{1+i}{1-i}\right)^{2024}, \quad(i \sqrt{3}-1)^{17}
$$

8. Using de Moivre's formula, write a formula for $\cos (3 \varphi), \sin (3 \varphi)$ in terms of $\sin \varphi, \cos \varphi$.
*9. Compute $1+\cos \varphi+\cos 2 \varphi+\cdots+\cos n \varphi$. [Hint: if $z=\cos \varphi+i \sin \varphi$, what is $1+z+z^{2}+\cdots+z^{n}$?]
