MATH 10

ASSIGNMENT 2: COMPLEX NUMBERS REVIEW

SEP 24, 2023

Complex numbers

Consider the set $\mathbb{R}[i]$ of polynomials with real coefficients in one variable (which we will now denote by i rather than x) but with one extra relation:

$$
i^{2}+1=0
$$

Thus, we will treat two polynomials in i which differ by a multiple of $i^{2}+1$ as equal (This can be done more formally in the same was as we define multiplication and division of remainders modulo n for integers).

Note that this relation implies

$$
i^{2}=-1, \quad i^{3}=i^{2} i=-i, \quad i^{4}=1, \ldots
$$

so using this relation, any polynomial can be replaced by a polynomial of the form $a+b i$. For example,

$$
(1+i)(2+3 i)=2+4 i+3 i^{2}=2+4 i-3=-1+4 i
$$

Thus, we get the following definition:
Definition. The set \mathbb{C} of complex numbers is the set of expressions of the form $a+b i, a, b \in \mathbb{R}$, with addition and multiplication same as for usual polynomials with an added relation $i^{2}=-1$.

Since multiplication and addition of polynomials satisfies the usual distributivity and commutativity properties, the same holds for complex numbers.

Note that any real number a can also be considered as a complex number by writing it as $a+0 i$; thus, $\mathbb{R} \subset \mathbb{C}$.

It turns out that complex numbers can not only be multiplied and added but also divided (see problem 4).

We can represent a complex number $z=a+b i$ by a point on the plane, with coordinates (a, b). Thus, we can identify
complex numbers $=$ pairs (a, b) of real numbers $=$ vectors in a plane
In this language, many of the operations with complex numbers have a natural geometric meaning:

- Addition of complex numbers corresponds to addition of vectors.
- The magnitude (also called absolute value) $|z|=\sqrt{z \bar{z}}=\sqrt{a^{2}+b^{2}}$ is just the distance from the corresponding point to the origin, or the length of the corresponding vector. More generally, distance between two points z, w is $|z-w|$.
- Complex conjugation $z \mapsto \bar{z}$ is just the reflection around x-axis.

Magnitude and argument

The magnitude of a complex numbers $z=a+b i$ is $|z|=\sqrt{z \bar{z}}=\sqrt{a^{2}+b^{2}}$; geometrically it is the length of vector $z=(a, b)$. If $z \neq 0$, its argument $\arg z$ is defined to be the angle between the positive part of x-axis and the vector z measured counterclockwise. Thus, instead of describing a complex number by its coordinates $a=\operatorname{Re}(z), b=\operatorname{Im}(z)$ we can describe it by its magnitude $r=|z|$ and $\operatorname{argument} \varphi=\arg (z)$:

Relation between r, φ and $a=\operatorname{Re}(z), b=\operatorname{Im}(z)$ is given by

$$
\begin{aligned}
& a=r \cos (\varphi), \quad b=r \sin (\varphi) \\
& z=a+b i=r(\cos (\varphi)+i \sin (\varphi))
\end{aligned}
$$

Homework

1. Compute the following expressions involving complex numbers:
(a) $(1+2 i)(3+i)$
(b) i^{7}
(c) $(1+i)^{2}$
(d) $(1+i)^{7}$
(e) $\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{3}$
2. Define for a complex number $z=a+b i$ its conjugate by $\bar{z}=a-b i$.
(a) Prove by explicit computation that $\overline{z+w}=\bar{z}+\bar{w}, \overline{z w}=\bar{z} \cdot \bar{w}$.
(b) Prove that for $z=a+b i, z \cdot \bar{z}=a^{2}+b^{2}$ and thus, it is non-negative real number.
3. Define for any complex number its absolute value by $|z|=\sqrt{z \bar{z}}=\sqrt{a^{2}+b^{2}}$ (see previous problem). Prove that then $|z w|=|z||w|$. [Hint: use formula $|z|=\sqrt{z \bar{z}}$ instead of $|z|=\sqrt{a^{2}+b^{2}}$.]
4. Prove that any non-zero complex number z has an inverse: there exists w such that $z w=1$ (hint: $\left.z \bar{z}=|z|^{2}\right)$.
5. Compute
(a) $(1+i)^{-1}$
(b) $\frac{1+i}{1-i}$
(c) $(3+4 i)^{-1}$
(d) $(1+i)^{-3}$
6. (a) Find a complex number z such that $z^{2}=i$
(b) Find a complex number z such that $z^{2}=-2+2 i \sqrt{3}$.
[Hint: write z in the form $z=a+b i$ and then write and solve equation for a, b]
7. Find the absolute value and argument of the following numbers:
$1+i$
$-i$
$w=\frac{\sqrt{3}}{2}+\frac{i}{2}$ (hint: show that the points $0, w, \bar{w}$ form a regular triangle)
8. Find a complex number which has argument $\pi / 4=45^{\circ}$ and absolute value 2 .
9. Draw the following sets of points in \mathbb{C} :
(a) $\{z \mid \operatorname{Re} z=1\}$
(b) $\{z||z|=1\}$
(c) $\{z \mid \arg z=3 \pi / 4\}$ (if you are not familiar with measuring angles in radians, replace $3 \pi / 4$ by 135°).
(d) $\left\{z \mid \operatorname{Re}\left(z^{2}\right)=0\right\}$
(e) $\{w||w-1|=1\}$
(f) $\left\{w\left|\left|w^{2}\right|=2\right\}\right.$
(g) $\{z \mid z+\bar{z}=0\}$
10. Find two numbers u, v such that

$$
\begin{aligned}
& u+v=6 \\
& u v=13
\end{aligned}
$$

Hint: use Vieta formulas.

