ADVANCED PHYSICS CLUB
DECEMBER 10, 2023

UsEFUL RESOURCES

The updates, homework assignments, and useful links for APC can be found on SchoolNova's web page:
https://schoolnova.org/nova/classinfo?class_id=adv_phy_club\&sem_id=ay2020
The practical information about the club and contacts can be found on the same web page.

TodAY's meeting

Today we discuss momentum conservation law.

Homework

1. 2. Solve the following problems from the previous $\mathrm{F}=$ ma exams:
(a) 4, 5 (2012: https://www.aapt.org/physicsteam/2013/upload/exam1-2012-unlocked.pdf)
(b) 6 (2011: https://www.aapt.org/physicsteam/2012/upload/WebAssign-exam1-2011-1-4.pdf)
(c) 15, 16 (2010: https://www.aapt.org/physicsteam/2010/upload/2010_Fma.pdf)
(d) 2, 3, 14, 20 (2009: https://www.aapt.org/physicsteam/2010/upload/2009_F-ma.pdf)
1. A cosmic ship had speed v before the last rocket stage was detached. After detachment ship's speed became $1.01 v$ and the rocket stage moves away with speed $0.04 v$ relatively to the ship. What is the mass of the rocket stage if ship's mass is m_{0} ?
2. A particle of mass m_{1} moving with velocity v hit another particle of mass m_{2} and bounced from it with velocity u at the direction perpendicular to its' initial motion. What is velocity of m_{2} particle after the collision?

3. An astronaut of mass m_{1} stands on the outer surface of a space station which is a hollow cylinder of mass m_{2} and radius R. The astronaut starts going around the station while staying on its surface. Find the trajectory of the astronaut. Initially both the astronaut and the station are at rest.

4. A missile is torn into two identical pieces at the highest point of its' trajectory which is at distance L in the horizontal direction from the launch point. On of the pieces returns exactly to the launch point. Where does the other piece land?
*6. A tank with water with density ρ_{0} rests on a frictionless table. Volume of water is V_{0}. There is a bug with volume V and density ρ at the bottom of the tank. The bug starts to move with horizontal velocity v with respect to the tank. With what velocity
 will the tank move on the table? Neglect mass of the tank. Water level stays horizontal at all times.
*7. A monkey of mass m is balanced with blocks on two pulleys A and B as shown on the figure. The whole system is initially at rest. How the $2 m$ block is going to move if the monkey starts pulling the rope with speed v with respect to itself?

For the next meeting
IMPORTANT: The next club's meeting is at $3: 30 \mathrm{pm}$, via Zoom, on Sunday, January 7.

