ASSIGNMENT 14: NUMBER THEORY

MARCH 17, 2024

Simple problems

1. Find the remainder upon the division of 17^{2022} by 7 .
2. In how many zeroes does the number 100! end?
3. Prove that $2222^{5555}+5555^{2222}$ is divisible by 7
4. How many perfect squares are divisors of of the product $1!\cdot 2!\cdots 9$!?
5. Prove that, given any prime $p>5$, there is a number of the form $111 \ldots 1$ which is divisible by p. [Hint: look at remainder upon division by p]

Euclid's algorithm Revisited

Recall the following simple statement.
If a, b are positive integers, with $a \geq b$, then

- Pairs (a, b) and $(a-b, b)$ have same common divisors (i.e., d is a common divisor of (a, b) if and only if it is a common divisor of $(a-b, b))$
- Let r be the remainder upon division of a by $b: a=b q+r$. Then pairs (a, b) and (b, r) have the same common divisors.
This implies the Euclid algorithm of finding the greatest common divisor of (a, b) : start with pair (a, b) and replace it by $(b, r=a \bmod b)$; repeat until you have pair $(d, 0)$. The gcd doesn't change during this, so $\operatorname{gcd}(a, b)=\operatorname{gcd}(d, 0)=d$.

This also implies more useful corollaries.

1. A number n is a common divisor of (a, b) if and only if n is a divisor of $d=\operatorname{gcd}(a, b)$.
2. A number c can be written as a combination of a, b (i.e. in the form $a x+b y$, with x, y integer) if and ony if c is a multiple of $d=\operatorname{gcd}(a, b)$.
3. A number a is invertible $\bmod n$ (i.e. there exists an integer x such that $a x \equiv 1 \bmod n$) if and only if $\operatorname{gcd}(a, n)=1)$; in this case, numbers a, n are called relatively prime.

Harder problems

6. Let $a_{n}=111 \ldots 1$ (n ones).

$$
\text { Find } \operatorname{gcd}\left(a_{179}, a_{57}\right)
$$

7. What is the largest integer that can not be written in the form $17 x+39 y$ with non-negative integer x, y ?
8. Sasha has drawn an $n \times n$ rectangle on a square ruled paper and then drawn a diagonal of that rectangle.
(a) How many nodes will this diagonal contain? [A node is a point where the grid lines intersect.]
(b) Into how many segments will this diagonal be divided by its intersectiosn with the grid lines?
9. (a) Let $a>b$ be positive integers. Show that then

$$
\operatorname{gcd}\left(2^{a}-1,2^{b}-1\right)=\operatorname{gcd}\left(2^{a-b}-1,2^{b}-1\right)
$$

(b) Show that

$$
\operatorname{gcd}\left(2^{a}-1,2^{b}-1\right)=2^{\operatorname{gcd}(a, b)}-1
$$

(c) Does the same work if we replace 2 by other numbers?
10. (a) Show that $2^{3 k}+1$ is divisible by $2^{k}+1$
(b) Show that the same is true if we replace 3 by any odd integer: e.g., $2^{5 k}+1$ is also divisible by $2^{k}+1$
(c) Show that if a number $2^{m}+1$ is a prime, then m itself is a power of 2 .
(d) Find as many prime numbers of the form $2^{m}+1$ as you can. Whoever gets most, gets a special prize!

