MATH CLUB: RECURRENT SEQUENCES

NOVEMBER 19, 2023

In many problems, a sequence is defined using a recurrence relation, i.e. the next term is defined using the previous terms. By far the most famous of these is the Fibonacci sequence:

$$
\begin{equation*}
F_{0}=0, F_{1}=F_{2}=1, \quad F_{n+1}=F_{n}+F_{n-1} \tag{1}
\end{equation*}
$$

The first several terms of this sequence are below:

$$
0,1,1,2,3,5,8,13,21,34, \ldots
$$

1. Let a sequence be defined by the following recurrence relation:

$$
a_{n+1}=2 a_{n}-1, \quad a_{1}=3
$$

Write several terms of this sequence and try to find a pattern. [Hint: look at $a_{n}-1$.] Use induction to prove your guess.
2. Daniel is coming up the staircase of 20 steps. He can either go one step at a time, or skip a step, moving two steps at a time.

In how many ways can he come up the stairs?
["Way" refers to (ordered) sequences of his moves, e.g. 1, $2,1,1,2,2, \ldots$; each number represents by how many steps he moved, and the sum must be equal to 20.]

Hint: again, write a recurrence formula!
3. How many ways are there to write a 10 -letter "word" consisting of letters A and B if we do not allow letter B to appear two times in a row? What if we allow for B at most two times in a row?
4. How many ways are there to tile a 2×20 strip of paper by 1×2 dominos?
5. A frog sits at vertex A of triangle $A B C$. Every minute it jumps to one of adjacent vertices.

How many ways there are for the frog to get to vertex A after n minutes? What is the probability that after n minutes, it will be back to A ?
[Hint: let a_{n} be the number of ways of getting back to A after n jumps, and b_{n} - number of ways of getting to B after n jumps. Try to get recurrence relation for a_{n}, b_{n}. If you can't guess the general solution for this recurrence relation, wait until next time.]
6. Consider several first powers of the number $1+\sqrt{2}$

$$
\begin{aligned}
& (1+\sqrt{2})^{1}=1+\sqrt{2}=\sqrt{2}+\sqrt{1} \\
& (1+\sqrt{2})^{2}=3+2 \sqrt{2}=\sqrt{9}+\sqrt{8} \\
& (1+\sqrt{2})^{3}=7+5 \sqrt{2}=\sqrt{50}+\sqrt{49}
\end{aligned}
$$

Explore these patterns as follows.
Define integers a_{n}, b_{n} by $(1+\sqrt{2})^{n}=a_{n}+b_{n} \sqrt{2}$.
(a) Show that then $(1-\sqrt{2})^{n}=a_{n}-b_{n} \sqrt{n}$
(b) Show that $a_{n}^{2}-2 b_{n}^{2}=(-1)^{n}$. [Hint: $a_{n}^{2}-2 b_{n}^{2}=\left(a_{n}-\sqrt{2} b_{n}\right)\left(a_{n}+\sqrt{2} b_{n}\right)$.]
(c) Find recurrent relations for a_{n}, b_{n}.
*(d) Try to find the general formula for a_{n}, b_{n}.

