Fields

- A Field is a physical quantity that has certain value at any point of physical space (x, y, z), and time, t. In other words, it's a function defined in physical space \& time.
- A field can be vector or scalar, but there are also other types.
- Electric field \mathbf{E}, and Newtonian gravity \mathbf{g}, are examples of vector fields.
- Electric force acting on a charge q :

$$
\vec{F}_{\text {elect }}=q \vec{E}
$$

here electric field does not depend on the charge q itself, but depends on other charges in space.

- Gravitational force:

$$
\vec{F}_{g r a v}=m \vec{g}
$$

Mass m is the gravitational charge, g is the local gravity field. g is also an acceleration of a freely falling object, but of course it does not have to have the familiar value of $9.8 \mathrm{~m} / \mathrm{s}^{2}$, as on the surface of Earth.

Problem 1. For the following cases, sketch electric field lines:
a)

0^{+q}

-q
b)

$$
\begin{array}{cc}
+q & 0^{-2 q} \\
-2 q & 0 \\
+q
\end{array}
$$

c)

$$
+q 0 \quad O+q
$$

