Gravity and Electrostatics

- Newton's Law of Gravity. Two masses, m_{1} and m_{2}, experience gravitational attractive force to each other, that depends on distance between them, r :

$$
F=-\frac{G m_{1} m_{2}}{r^{2}} ; \quad G=6.7 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \cdot \mathrm{~s}^{2}}
$$

G is called Gravitational Constant. In this equation, '-' sign stands for attraction (positive direction is "away") .

- Coulomb's Law. Two electric charges, q_{1} and q_{2}, at distance r , act onto each other with electrostatic force given by Coulomb's formula:

$$
F=\frac{k q_{1} q_{2}}{r^{2}} ; \quad k=9 \cdot 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}
$$

Here k is called Coulomb's constant . SI unit of electric charge is 1 Coulomb (1C), which is a very large charge. Coulomb's Law is very similar to Newton's, but

- Electric charges can be positive or negative, unlike masses.
- Note that the signs in two laws are different. As a result, charges of the same sign repel, while the opposite ones attract each other.

Fields

- A Field is a physical quantity that has certain value at any point of physical space (x, y, z), and time, t. In other words, it's a function defined in physical space \& time.
- A field can be vector or scalar, but there are also other types.
- Electric field \mathbf{E}, and Newtonian gravity \mathbf{g}, are examples of vector fields.
- Electric force acting on a charge q :

$$
\vec{F}_{\text {elect }}=q \vec{E}
$$

here electric field does not depend on the charge q itself, but depends on other charges in space.

- Gravitational force:

$$
\vec{F}_{g r a v}=m \vec{g}
$$

Mass m is the gravitational charge, g is the local gravity field. g is also an acceleration of a freely falling object, but of course it does not have to have the familiar value of $9.8 \mathrm{~m} / \mathrm{s}^{2}$, as on the surface of Earth.

Homework 1

An electric capacitor is made of two parallel metallic plates that are oppositely charged. Let electric field inside this capacitor be $\mathbf{E = 1 0 0 0 N} / \mathbf{C}$ (Newton per Coulomb), directed from the positive to negative electrode. When the negative plate is illuminated with UV light, electrons may escape the metal. At moment $\mathbf{t}=\mathbf{0} \mathbf{s}$ one such electron appears right near the negative surface, with no initial velocity.
What will be its acceleration, if electron charge is $\mathbf{e}=-\mathbf{1 . 6} \times 10^{-19} \mathrm{C}$, and mass is $\mathrm{m}=0.9 \times 10^{-\mathbf{3 0}} \mathrm{kg}$.
Calculate the time it will take this electron to reach the positive plate, due to electric force. Distance between the plates is $\mathbf{h}=\mathbf{0 . 0 0 1} \mathbf{m}$.

