Density: $\rho=\frac{\text { Mass }}{\text { Volume }}$

Example: density of water $1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=1 \frac{\mathrm{~kg}}{\mathrm{l}}=1 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}=1 \frac{\mathrm{~g}}{\mathrm{ml}}$

Pressure $=\frac{\text { Force }}{\text { Area }}$

Units of Pressure:

$$
\begin{gathered}
1 P a=1 \frac{N}{m^{3}}(\text { standard SI unit called Pascal) } \\
1 \mathrm{bar}=100 \mathrm{kPa}=10^{5} \mathrm{~Pa}
\end{gathered}
$$

Atmospheric Pressure $1 \mathrm{~atm}=101 \mathrm{kPa}$, it is very close to 1 bar .

Pressure in fluids

- Pascal's Principle:
"Pressure in static fluid is transmitted uniformly in all directions"

$$
\mathbf{P}=\mathrm{const}
$$

(static fluid, no gravity)

- Hydrostatic Pressure. Due to gravity, the pressure increases as you go deeper in fluid:

$$
\Delta P=\rho g \Delta h
$$

Buoyancy

-Archimedes Principle : "Buoyancy force = weight of displaced fluid"

- Buoyancy also acts on objects in gases (think of balloons in air).
- Units of Volume and Density:

$$
\begin{aligned}
& 1 \mathrm{~m}^{3}=10^{3} l=10^{6} \mathrm{~cm}^{3} \\
& 1 \mathrm{~cm}^{3}=1 \mathrm{ml}=10^{-3} \mathrm{l}=10^{-6} \mathrm{~m}^{3} \\
& \rho_{H_{20}=}=1 \frac{g}{\mathrm{ml}}=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
\end{aligned}
$$

Homework

Problem 1

Imagine that you have extremely accurate digital scales that were calibrated in vacuum (in the presence of regular Earth gravity). How much will they show (in grams) if you weight $m=1 \mathrm{~kg}$ of Aluminum, in the presence of atmosphere? Density of Aluminum is $\rho_{\mathrm{Al}}=2.800$ $\mathrm{kg} / \mathrm{m}^{3}$, density of air is $\rho_{\text {air }}=1.2 \mathrm{~kg} / \mathrm{m}^{3}$.

Problem 2.

Two U-shaped pipes are used to measure pressure in a sealed tank containing some gas. The first pipe contains water, and it shows a level difference $h_{1}=10 \mathrm{~cm}$. What is the density of the liquid in the other pipe, if the level difference in that pipe is $h_{2}=15 \mathrm{~cm}$? The open ends of both pipes are exposed to the atmosphere.

