Length scales in Nature

1 mm

1 km

Grain of sugar, small insects, etc

Brooklyn bridge

 10^{3} m

1 m

1 micron (1µm) Particles in smoke, milk, etc

(1-20 µm)

Bacteria (1-10 µm)

(2 -10 μm)

1 m

1000 km

Proton, neutron, atomic nucleus

10^{12} m = 1 billion km \approx 1 light hour

Modern Physics

about 100 nm = 0.1 μm

The difference between droplet and airborne transmission

Droplet transmission

Coughs and sneezes can spread droplets of saliva and mucus

Airborne transmission

Tiny particles, possibly produced by talking, are suspended in the air for longer and travel further

pore size: $< 0.3 \,\mu m$

N95

Surgical masks

about 100 µm (0.1 mm)

Cotton masks

Cloth coverings

Homework 1

Problem 1.

Estimate the number of cells in your body, by approximating a single cells as a cube sized 10x10x10 micron. *Hint:* if you know your mass, you know your volume.

Problem 2.

Once a person is infected with COVID-19, the virus starts multiplying. In approximately 5 days, at the moment of when the symptom of the disease appear, 1 ml of patient's saliva may contain as many as 10⁷ viruses.

A single cough can generate about 1000 droplets, each approximately 50 micron in radius (there are also smaller droplets which we neglect). Estimate, how many viruses are carries by a single cough of a patient at the time of the symptom onset.