Acceleration

- Acceleration:

$$
a=\frac{\text { change in velocit } \mathrm{y}}{\text { change in time }}=\frac{\Delta v}{\Delta t}
$$

Standard units of acceleration : m/s ${ }^{2}$

- If there were no air resistance, all objects in Earth gravity would fall with the same acceleration,
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ (directed downward)

Galileo Galilei's experiment in Pisa (possibly, a legend)

Homework

Problem 1. A ball is thrown vertically upwards with initial speed $v_{0}=30 \mathrm{~m} / \mathrm{s}$. Gravitational acceleration is $g=10 \mathrm{~m} / \mathrm{s}^{2}$, and is directed downward. What will be the velocity of the ball after time $\mathrm{t}=4 \mathrm{~s}$?

Problem 2.

The largest passenger airplane, Airbus A380, has acceleration $a=2 \mathrm{~m} / \mathrm{s}^{2}$ during its take-off. How much time it needs to reach the take off speed $\mathrm{v}=280 \mathrm{~km} / \mathrm{hr}$?

