2nd Newton's Law for Rotation

Linear motion	Rotation	$\omega = \frac{d\theta}{dt}$
Coordinate: x	Angle (in radians): $\theta = l/R$	
Velocity: $v = \Delta x / \Delta t$	Angular velocity: $\omega = \Delta \theta / \Delta t$	dθ
Mass: m	Moment of Inertia: I	
Acceleration: $a = \Delta v / \Delta t$	Angular acceleration: $\alpha = \Delta \omega / \Delta t$	
Force, F	Torque, $T = F \times l$	T F
2 nd Newton's Law:	2 nd Newton's Law (for rotation);	
F = ma	$T = I \frac{\Delta \omega}{\Delta t} = I \alpha$	
	Torque	$e T = F (Force) \times L (Length)$

Statics

Consider a rigid object in equilibrium. Since it has zero acceleration , and no rotation, the sum of all forces and torques applied should be 0:

$$\sum \vec{F} = 0$$
$$\sum \vec{T} = 0$$

Example: whiteboard on two holders:

• Total force = 0:

$$-mg + N_1 + N_2 = 0$$

• Total torque = 0.

$$N_2 l_2 - N_1 l_1 = 0$$

The torque is with respect to point C (center), thus *mg* produces zero torque (no lever). "Counter–clockwise" is positive rotation. Solving above equations:

$$mg = N_1 + N_2 = N_1(1 + l_1/l_2)$$

$$N_1 = mgl_2/(l_1 + l_2)$$

$$N_2 = mgl_1/(l_1 + l_2)$$

Homework

Problem 1

A ruler is used to balance two weights as shown in figure 1. The ruler total length is 30 cm , it is supported at its center (at 15 cm mark). Mass M1=30 g, is located at 10 cm mark. The other mass, M2 is at 30 cm mark. Find M2

Problem 2 (experimental) Use a ruler and a pencil to find the ratio of masses of US quarter and US penny. You may use other two coins if you wish, Its OK to use several identical coins. Make a picture of your experiment, describe procedure and give your results.