2nd Newton's Law for Rotation

Linear motion	Rotation
Coordinate: x	Angle (in radians): $\theta=l / R$
Velocity: $\quad v=\Delta x / \Delta t$	Angular velocity: $\omega=\Delta \theta / \Delta t$
Mass: m	Moment of Inertia: I
Acceleration: $a=\Delta v / \Delta t$	Angular acceleration: $\alpha=\Delta \omega / \Delta t$
Force, F	Torque, $T=F \times l$
$2^{\text {nd }}$ Newton's Law:	$2^{\text {nd }}$ Newton's Law (for rotation) $I \frac{\Delta \omega}{\Delta t}=I \alpha$
$\qquad F=m a$	

$$
\text { Torque T = F (Force) } \times \mathrm{L} \text { (Length) }
$$

Statics

Consider a rigid object in equilibrium. Since it has zero acceleration , and no rotation, the sum of all forces and torques applied should be 0 :

$$
\begin{aligned}
& \sum \vec{F}=0 \\
& \sum \vec{T}=0
\end{aligned}
$$

$$
\text { Torque T = F (Force) } \times \mathrm{L} \text { (Length) }
$$

Example: whiteboard on two holders:

- Total force = 0:

$$
-m g+N_{1}+N_{2}=0
$$

- Total torque $=0$.

$$
N_{2} l_{2}-N_{1} l_{1}=0
$$

The torque is with respect to point C (center), thus $m g$ produces zero torque (no lever). "Counter-clockwise" is positive rotation. Solving above equations:

$$
\begin{gathered}
m g=N_{1}+N_{2}=N_{1}\left(1+l_{1} / l_{2}\right) \\
N_{1}=m g l_{2} /\left(l_{1}+l_{2}\right) \\
N_{2}=m g l_{1} /\left(l_{1}+l_{2}\right)
\end{gathered}
$$

Homework

Problem 1

A ruler is used to balance two weights as shown in figure 1. The ruler total length is 30 cm , it is supported at its center (at 15 cm mark). Mass M1=30 g, is located at 10 cm mark. The other mass, M 2 is at 30 cm mark. Find M2

Problem 2 (experimental) Use a ruler and a pencil to find the ratio of masses of US quarter and US penny. You may use other two coins if you wish, Its OK to use several identical coins. Make a picture of your experiment, describe procedure and give your results.

