Rotation of a Solid Body

Angle (in radians): length of arc over radius

$$
\Delta \theta=\frac{\Delta l}{R}
$$

Angular velocity:

$$
\omega=\frac{\Delta \theta}{\Delta t}
$$

It is related to regular (linear) speed of rotational motion as:

$$
v=\frac{\Delta l_{a r c}}{\Delta t}=\varpi R
$$

Kinetic energy of a rotating object

In a rotating rigid body, the further you are from the center, the larger is your speed!

Rotational kinetic energy is

$$
K=\frac{I \omega^{2}}{2}
$$

Here $I=m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+m_{3} r_{3}^{2}+\cdots$.
is called moment of inertia.
We pretended to "break" the solin object on many small pieces, m_{n} is its mass the n-th piece and r_{n} is its distance of from the axis of rotation.

You can easily find moment of inertia of a thin ring (or hoop, or bicycle wheel): most of its mass M is at the same distance R from the center, so

$$
I_{\text {ring }}=M R^{2}
$$

For other shapes, you can use reference tables

Homework

Problem

a) Moment of inertia of a uniform disk of mass M and radius R is $I_{d i s k}=M R^{2} / 2$. Find the total kinetic energy of a disk as it rolls with linear speed V , without sliding. Note that its kinetic energy consists of regular ("translational") and rotational one.
b) The disk starts rolling down a hill without sliding, with zero initial speed. What will be its final speed on the ground level, if the hill is 10 m high , and there is no energy loss?

