Work and Kinetic Energy

Starting with the 2nd Newton's Law:

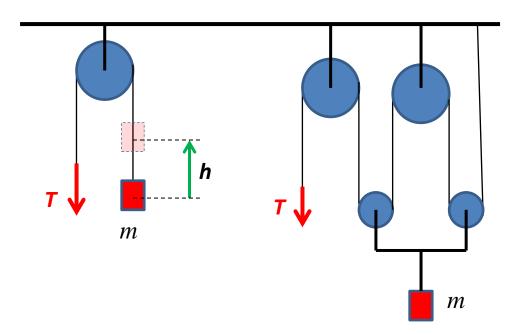
$$F = ma$$

One can derive another important result:

"Change in kinetic energy is equal to the mechanical work done by all forces"

$$\Delta K = W$$

$$K = \frac{mv^2}{2}$$
, is called Kinetic Energy of an object $W = F\Delta x$, is called Mechanical Work


(Work = Force x Displacement)

Homework

Problem 1. The car of mass $m=2000 \ kg$ moves at speed v=30m/s when suddenly the driver applies breaks. Find the distance the car will travel before coming to complete stop, if friction coefficient is $\mu=0.5$.

Hint: use the Kinetic Energy theorem (Δ K=W) to solve it. Remember that friction force is F= μ N, where N is normal reaction.

Problem 2. Find the force T required to lift a block of mass m in two cases below. For each case, calculate the mechanical work needed to move the block by distance h upward. *Hint:* what is the displacement of the end of the rope, Δx in each case?

