
MATH 8: HANDOUT 17
NUMBER THEORY 2: EUCLID’S ALGORITHM

NOTATION

Z — all integers
N — positive integers: N = {1, 2, 3 . . . }.
d|a means that d is a divisor of a, i.e., a = dk for some integer k.
gcd(a, b): greatest common divisor of a, b.

PRIME NUMBERS

Prime numbers play important role in number theory.

• A natural number m is prime if it has no positive divisors other than 1 and m itself.
• m > 1 is composite if it is not prime.
• p > 0 is a prime factor of m if p|m and p is prime.

Note: number 1 is usually not considered composite; thus, it is the only natural number which is neither
composite nor prime.

Theorem 1. Any number greater than 1 can be written as a product of one or more primes.

This is called prime factorization of a number.

Proof. Proof by contradiction. Assume it is not so, i.e. there are numbers > 1 that can not be written as
products of primes. Take the smallest such number n. It can not be prime, so it is composite; thus n = ab,
1 < a < n, 1 < b < n. Since a, b are less than n, each of them is a product of primes. Multiplying these two
products together, we get a formula for n as a product of primes. □

It is also true that prime factorization is unique (up to changing the order of factors), but it is a much
more difficult result. We will discuss it later.

Theorem 2. (Euclid) There are infinitely many prime numbers.

Proof of this theorem is given to you as an exercise (see Problem ??)

Proof. We will do the proof by contradiction. Assume there are a finite number n of primes, p1, p2, . . . , pn.
Consider the number that is the product of these, plus one: N = p1 · · · · · pn + 1. By construction, N is not
divisible by any of the pi (it has a remainder 1 upon division by any of pi). Hence it is either prime itself, or
divisible by another prime that is greater than pn, contradicting the assumption. □

Note, that it is not always the case the the product on primes plus 1 is a prime number itself:

2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509.

EUCLID’S ALGORITHM

As a consequence of the Theorem ??, it is easy to see that the following theorem is valid:

Theorem 3. If a = bq + r, then the common divisors of pair (a, b) are the same as common divisors of pair
(b, r). In particular,

gcd(a, b) = gcd(b, r)

This gives a very efficient way of computing the greatest common divisor of (a, b), called Euclid’s algorithm:

1. If needed, switch the two numbers so that a > b
2. Compute the remainder r upon division of a by b. Replace pair (a, b) with the pair (b, r)
3. Repeat the previous step until you get a pair of the form (d, 0). Then gcd(a, b) = gcd(d, 0) = d.



Example 1.

gcd(42, 100) = gcd(42, 16) (because 100 = 2 · 42 + 16)

= gcd(16, 10) = gcd(10, 6) = gcd(6, 4)

= gcd(4, 2) = gcd(2, 0) = 2

As a corollary of this algorithm, we also get the following two important results.

Theorem 4. Let d = gcd(a, b). Then m is a common divisor of a, b if and only if m is a divisor of d.

In other words, common divisors of a, b are the same as divisors of d = gcd(a, b), so knowing the gcd gives
us all common divisors of a, b.

EUCLID’S ALGORITHM COROLLARIES

Theorem 5. Let d = gcd(a, b). Then it is possible to write d in the following form

d = xa+ yb

for some x, y ∈ Z.
(Expressions of this form are called linear combinations of a, b. )

Proof. Euclid’s algorithm produces for us a sequence of pairs of numebrs:

(a, b) → (a1, b1) → (a2, b2) → . . .

and the last pair in this sequence is (d, 0), where d = gcd(a, b).
We claim that we can write (a1, b1) as linear combination of a, b. Indeed, by definition

a1 = b = 0 · a+ 1 · b
b1 = r = a− qb = 1 · a− qb

where a = qb+ r.
By the same reasoning, one can write a2, b2 as linear combination of a1, b1. Combining these two state-

ments, we get that one can write a2, b2 as linear combinations of a, b. We can now continue in the same way
until we reach (d, 0). □
Example 2. We have shown above that gcd(100, 42) = 2 using Euclid’s algorithm. We can now use that
computation to write 2 as a linear combination of 100 and 42:

16 = 100− 2 · 42
10 = 42− 2 · 16 = 42− 2(100− 2 · 42) = −2 · 100 + 5 · 42
6 = 16− 10 = (100− 2 · 42)− (−2 · 100 + 5 · 42) = 3 · 100− 7 · 42
4 = 10− 6 = (−2 · 100 + 5 · 42)− (3 · 100− 7 · 42) = −5 · 100 + 12 · 42
2 = 6− 4 = (3 · 100− 7 · 42)− (−5 · 100 + 12 · 42) = 8 · 100− 19 · 42

Now, since with know that d = gcd(a, b) can be written as a linear combination of a and b, we can see that
then any multiple n = kd can also be written in such a form: if d = ax+ by, then kd = a · (kx) + b · (ky).

Conversely, if n = ax+ by, then since a, b are multiples of d, so is ax+ by.
In particular, if gcd(a, b) = 1, then one can write 1 = ax+ by.



PROBLEMS

1. Use Euclid’s algorithm to compute gcd(54, 36); gcd(97, 83); gcd(1003, 991)

2. Use Euclid’s algorithm to find all common divisors of 2634 and 522.

3. Prove that gcd(n, a(n+ 1)) = gcd(n, a)

4. (a) Is it true that for all a, b we have gcd(2a, b) = 2 gcd(a, b)? If yes, prove; if not, give a counterex-
ample.

(b) Is it true that for some a, b we have gcd(2a, b) = 2 gcd(a, b)? If yes, give an example; if not, prove
why it is impossible.

5. (a) Compute gcd(14, 8) using Euclid’s algorithm
(b) Write gcd(14, 8) in the form 8k+14l. (You can use guess and check, or proceed in the same way

as in the previous problem)
(c) Does the equation 8x+ 14y = 18 have integer solutions? Can you find at least one solution?
(d) Does the equation 8x+ 14y = 17 have integer solutions? Can you find at least one solution?
(e) Can you give complete answer, for which integer values of c the equation 8x + 14y = c has

integer solutions?

6. If I only have 15-cent coins and 12-cent coins, can I pay $1.35? $1.37?

7. You have two cups, one 240 ml, the other 140 ml. What amounts of water can be measured using
these two cups? [You can assume that you also have a large bucket of unknown volume.]

8. (a) Show that if 17c is divisible by 6, then c is divisible by 6.
Note: you can not use prime factorization - we have not yet proved that it is unique! Instead, yu
can argue as follows: since gcd(17, 6) = 1, we can write 1 = 17x + 6y. Thus, c = (17x + 6y)c.
Now argue why the right-hand side is divisible by 6.

*(b) More generally, prove that if a, b, c ∈ Z are such that a|bc and gcd(a, b) = 1, then one must have
a|c.

9. (a) Show that if a is odd, then gcd(a, 2b) = gcd(a, b).
*(b) Show that for m,n ∈ N, gcd(2n − 1, 2m − 1) = 2gcd(m,n) − 1


