
MATH 8: EUCLIDEAN GEOMETRY

1. FIRST AXIOMS

After we introduced some objects, including undefined ones, we need to have statements (axioms) that
describe their properties. Of course, the lack of definition for undefined objects makes such properties
impossible to prove. The goal here is to state the minimal number of such properties that we take for
granted, just enough to be able to prove or derive harder and more complicated statements. Here are the
first few axioms:

Axiom 1. For any two distinct points A,B, there is a unique line containing these points (this line is usually

denoted
←→
AB).

Axiom 2. If points A,B,C are on the same line, and B is between A and C, then AC = AB +BC

Axiom 3. If point B is inside angle ∠AOC, then
m∠AOC = m∠AOB+m∠BOC. Also, the measure
of a straight angle is equal to 180◦.
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Axiom 4. Let line l intersect lines m,n and angles ∠1,
∠2 are as shown in the figure below (in this situation,
such a pair of angles is called alternate interior angles).
Then m 󰀂 n if and only if m∠1 = m∠2.
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In addition, we will assume that given a line l and a point A on it, for any positive real number d, there
are exactly two points on l at distance d from A, on opposite sides of A, and similarly for angles: given a ray
and angle measure, there are exactly two angles with that measure having that ray as one of the sides.

2. FIRST THEOREMS

Now we can proceed with proving some results based on the axioms above.

Theorem 1. If distinct lines l,m intersect, then they intersect at exactly one point.

Proof. Proof by contradiction: Assume that they intersect at more than one point. Let P,Q be two of the
points where they intersect. Then both l,m go through P,Q. This contradicts Axiom 1. Thus, our assumption
(that l,m intersect at more than one point) must be false. □

Theorem 2. Given a line l and point P not on l, there exists a unique line m through P which is parallel to l.

Proof. Here we have to prove two things: the existence of a parallel line through the given point not on the
given line, and its uniqueness. Below we provide a sketch of the proof – please fill in the details and draw a
diagram at home!

Existence: Let m be any line that goes through P and intersect l at point O. Let A be a point on the line
l. Then we can measure the angle ∠POA. Now, let PB be such that m∠BPO = m∠POA and B is on the

other side of m than A. In this case, by Axiom 4,
←→
AB󰀂 l.

Uniqueness: Imagine that there are two lines m,n that are parallel to l and go through P . Take a line
k that goes through P and intersects l in point O. Let A be a point on line l distinct from O, and B,C —
points on lines m and n respectively on the other side of line k than A. Since both m,n are parallel to l, we

can see that m∠AOP = m∠BPO = m∠CPO – but that would mean that lines
←→
BP and

←→
CP are the same —

contradiction to our assumption that there are two such lines. □

Theorem 3. If l 󰀂 m and m 󰀂 n, then l 󰀂 n



Proof. Assume that l and n are not parallel and intersect at point P . But then it appears that there are two
lines that are parallel to m are go through point P — contradiction with Theorem 2. □
Theorem 4. Let A be the intersection point of lines l,m, and let angles 1, 3 be as shown in the figure below
(such a pair of angles are called vertical). Then m∠1 = m∠3.
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Proof. Let angle 2 be as shown in the figure to the
left. Then, by Axiom 3, m∠1 + m∠2 = 180◦, so
m∠1 = 180◦ −m∠2. Similarly, m∠3 = 180◦ −m∠2.
Thus, m∠1 = m∠3. □

Theorem 5. Let l,m be intersecting lines such that one of the four angles formed by their intersection is equal
to 90◦. Then the three other angles are also equal to 90◦. (In this case, we say that lines l,m are perpendicular
and write l ⊥ m.)

Proof. Left as a homework exercise. □
Theorem 6. Let l1, l2 be perpendicular to m. Then l1 󰀂 l2.

Conversely, if l1 ⊥ m and l2 󰀂 l1, then l2 ⊥ m.

Proof. Left as a homework exercise. □
Theorem 7. Given a line l and a point P not on l, there exists a unique line m through P which is perpendicular
to l.

Proof. Left as a homework exercise. □

3. TRIANGLES

Theorem 8. Given any three points A, B, C, which are not on the same line, and line segments AB, BC, and
CA, we have m∠ABC +m∠BCA +m∠CAB = 180◦. (Such a figure of three points and their respective line
segments is called a triangle, written △ABC. The three respective angles are called the triangle’s interior angles.)

Proof. The proof is based on the figure below and use of Alternate Interior Angles axiom. Details are left to
you as a homework.
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□
Given a triangle △ABC, let D be a point on the line AB, so that A is between D and B. In this situation,

angle ∠DAC is called an external angle of △ABC.
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Theorem 9 (External angle theorem). m∠DAC = m∠B +m∠C (in particular this implies that m∠DAC >
m∠B, and similarly for ∠C).



Proof. m∠DAC = 180◦ − m∠CAD. But m∠CAD = 180◦ − m∠C − m∠B, and therefore m∠DAC =
m∠B +m∠C. As a consequence, we see that m∠DAC > m∠B and m∠DAC > m∠C. □

4. CONGRUENCE

It will be helpful, in general, to have a way of comparing geometric objects to tell whether they are the
same. We will build up such a notion and call it congruence of objects. To begin, we define congruence
of angles and congruence of line segments (note that an angle cannot be congruent to a line segment; the
objects have to be the same type).

• If two angles ∠ABC and ∠DEF have equal measure, then they are congruent angles, written
∠ABC ∼= ∠DEF .

• If the distance between points A, B is the same as the distance between points C, D, then the line
segments AB and CD are congruent line segments, written AB ∼= CD.

• If two triangles △ABC, △DEF have respective sides and angles congruent, then they are congruent
triangles, written △ABC ∼= △DEF . In particular, this means AB ∼= DE, BC ∼= EF , CA ∼= FD,
∠ABC ∼= ∠DEF , ∠BCA ∼= ∠EFD, and ∠CAB ∼= ∠FDE.

Note that congruence of triangles is sensitive to which vertices on one triangle correspond to which vertices
on the other. Thus, △ABC ∼= △DEF =⇒ AB ∼= DE, and it can happen that △ABC ∼= △DEF but
¬(△ABC ∼= △EFD).

5. CONGRUENCE OF TRIANGLES

Triangles consist of six pieces (three line segments and three angles), but some notion of constancy of
shape in triangles is important in our geometry. We describe below some rules that allow us to, in essence,
uniquely determine the shape of a triangle by looking at a specific subset of its pieces.

Axiom 5 (SAS Congruence). If triangles △ABC and △DEF have two congruent sides and a congruent in-
cluded angle (meaning the angle between the sides in question), then the triangles are congruent. In particular,
if AB ∼= DE, BC ∼= EF , and ∠ABC ∼= ∠DEF , then △ABC ∼= △DEF .

Other congruence rules about triangles follow from the above: the ASA and SSS rules. However, their
proofs are less interesting than other problems about triangles, so we can take them as axioms and continue.

Axiom 6 (ASA Congruence). If two triangles have two congruent angles and a corresponding included side,
then the triangles are congruent.

Axiom 7 (SSS Congruence). If two triangles have three sides congruent, then the triangles are congruent.

6. ISOSCELES TRIANGLES

A triangle is isosceles if two of its sides have equal length. The two sides of equal length are called legs;
the point where the two legs meet is called the apex of the triangle; the other two angles are called the base
angles of the triangle; and the third side is called the base.

While an isosceles triangle is defined to be one with two sides of equal length, the next theorem tells us
that is equivalent to having two angles of equal measure.

Theorem 10 (Base angles equal). If △ABC is isosceles, with base AC, then m∠A = m∠C.
Conversely, if △ABC has m∠A = m∠C, then it is isosceles, with base AC.

Proof. A proof is left as homework. You would want to prove that △ABC ∼= △CBA. In one case, you would
use SSS and in another SAS axioms. □

In any triangle, there are three special lines from each vertex. In △ABC, the altitude from A is perpendic-
ular to BC (it exists and is unique by Theorem about the existence of the perpendicular); the median from A
bisects BC (that is, it crosses BC at a point D which is the midpoint of BC); and the angle bisector bisects
∠A (that is, if E is the point where the angle bisector meets BC, then m∠BAE = m∠EAC).

For general triangle, all three lines are different. However, it turns out that in an isosceles triangle, they
coincide.



Theorem 11. If B is the apex of the isosceles triangle ABC, and BM is the
median, then BM is also the altitude, and is also the angle bisector, from B.

Proof. Consider triangles △ABM and △CBM . Then AB = CB (by defini-
tion of isosceles triangle), AM = CM (by definition of midpoint), and side
BM is the same in both triangles. Thus, by SAS axiom, △ABM ∼= △CBM .
Therefore, m∠ABM = m∠CBM , so BM is the angle bisector.
Also, m∠AMB = m∠CMB. On the other hand, m∠AMB +m∠CMB =
m∠AMC = 180

◦
. Thus, m∠AMB = m∠CMB = 180

◦
/2 = 90

◦
. □
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Based on the properties above, we can prove that for right-angle triangle, a hypothenuse and a leg congru-
ence leads to congruence of triangles.

Theorem 12. Let △A1B1C1 and △A2B2C2 be two right-angle triangles with m∠B1 = m∠B2 = 90◦. If
A1B1 = A2B2 and A1C1 = A2C2, then △A1B1C1

∼= △A2B2C2.

Proof. Take a triangle △A2B2C2 and arrange it next to △A1B1C1 so that
A1B1 correspond to A2B2, as on the picture. Note, that since ∠A1B1C1 =
∠A2B2C2 = 90◦, C1C2 will be a straight line. Since A1C1 = A2C2, triangle
△A1C1C2 is isosceles. Therefore, A1B1 (same as A2B2) is an altitude of
this triangle, and by Theorem 11, it is also a median. Therefore, C1B1 =
C2B2. Therefore, triangles △A1B1C1 and △A2B2C2 are congruent by SSS.

□
C1 C2

A1 = A2

B1 = B2

7. PERPENDICULAR BISECTOR

Consider any property of points on the plane — for example, the property that a point P is a distance
exactly r from a given point O. The set of all points P for which this property holds true is called the locus of
points satisfying this property. As we have seen above, the locus of points that are a distance r from a point
O is called a circle (specifically, a circle of radius r centered at O).
Now consider we are given two points A, B. If a point P is an equal distance from A, B (i.e., if PA ∼= PB)
then we say P is equidistant from points A, B.

Theorem 13. The locus of points equidistant from a pair of points A, B is a line l which perpendicular to AB
and goes through the midpoint of AB. This line is called the perpendicular bisector of AB.

Proof. Let M be the midpoint of AB, and let l be the line through M which
is perpendicular to AB. We need to prove that for any point P ,

(AP ∼= BP ) ↔ P ∈ l

1. Assume that AP ∼= BP . Then triangle APB is isosceles; by Theo-
rem 11, it implies that PM ⊥ AB. Thus, PM must coincide with
l, i.e. P ∈ l. Therefore, we have proved implication one way: if
AP ∼= BP , then P ∈ l.

2. Conversly, assume P ∈ l. Then m∠AMP = m∠BMP = 90◦; thus,
triangles △AMP and △BMP are congruent by SAS, and therefore
AP ∼= BP .

□
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Theorem 14. In a triangle △ABC, the perpendicular bisectors of the 3 sides intersect at a single point. This
point is the center of a circle circumscribed about the triangle (i.e., such that all three vertices of the triangle are
on the circle).

Proof. Consider two perpendicular bisectors to BC and to AC. Points on the first one are equidistant from
B and C; points on the second one and equidistant from A and C. Then their intersection point M is thus



equidistant from all three A, B, C, and it means that M lies on the perpendicular bisector to AB, and it
means that all perpendicular bisectors intersect at this point M . □

8. MEDIAN, ALTITUDE, ANGLE BISECTOR

Last week we defined three special lines that can be constructed from any vertex in any triangle; each line
goes from a vertex of the triangle to the line containing the triangle’s opposite side (altitudes may sometimes
land on the opposite side outside of the triangle).
Given a triangle △ABC,

• The altitude from A is the line through A perpendicular to
←→
BC;

• The median from A is the line from A to the midpoint D of BC;

• The angle bisector from A is the line
←→
AE such that ∠BAE ∼= ∠CAE. Here we let E denote the

intersection of the angle bisector with BC.

The following result is an analog of Theorem 13. For a point P and a line l, we define the distance
from P to l to be the length of the perpendicular dropped from P to l (see problem 1 in the HW). We say
that point P is equidistant from two lines l, m if the distance from P to l is equal to the distance from P to m.

Theorem 15. For an angle ABC, the locus of points inside the angle which

are equidistant from the two sides BA, BC is the ray
−→
BD which is the angle

bisector of ∠ABC.
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Proof. We need to prove two things: first, if the point is on a bisector, then it’s equidistant from the angle
sides; and second, if the point is equidistant from angle sides, it is on the bisector.

Direction 1: Assume that the point P is on the bisector BD, and Q and R are bases of perpendiculars
from P to AB and CB respectively. Then △PBQ ∼= △PBR by ASA: ∠PBR = ∠PBQ since PB is a
bisector, PB is a common side of these two triangles, and ∠BQR = ∠BPR, since sum of angles in a triangle
is 90◦. Hence, PQ = PR.

Direction 2: No assume that P is inside the angle and PQ = PR, where Q and R are bases of perpen-
diculars from P to AB and CB respectively. Then △PQB and △PRB are right-angle triangles, PQ = PR,
and PB is a common side. By Theorem 12, △PQB ∼= △PRB, and therefore, ∠PBQ = ∠PBR, and point
P is on a bisector PB. □
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9. CONSTRUCTIONS WITH RULER AND COMPASS

Large part of classical geometry are geometric constructions: can we construct a figure with given prop-
erties? Traditionally, such constructions are done using straight-edge and compass: the straight-edge tool
constructs lines and the compass tool constructs circles. More precisely, it means that we allow the following
basic operations:

• Draw (construct) a line through two given or previously constructed distinct points. (Recall that by
axiom 1, such a line is unique).



• Draw (construct) a circle with center at previously constructed point O and with radius equal to
distance between two previously constructed points B, C

• Construct the intersections point(s) of two previously constructed lines, circles, or a circle and a line
All other constructions (e.g., draw a line parallel to a given one) must be done using these elementary

constructions only!
Constructions of this form have been famous since mathematics in ancient Greece. Here are some exam-

ples of constructions:

Example 1. Given any line segment AB and ray
−→
CD, one can construct a point E on

−→
CD such that

CE ∼= AB.

Construction. Construct a circle centered at C

with radius AB. Then this circle will intersect
−→
CD

at the desired point E. □

A B C E

Example 2. Given angle ∠AOB and ray
−→
CD, one

can construct an angle around
−→
CD that is congru-

ent to ∠AOB.

Construction. First construct point X on
−→
CD such

that CX ∼= OA. Then, construct a circle of ra-
dius OB centered at C and a circle of radius AB
centered at X. Let Y be the intersection of these
circles; then △XCY ∼= △AOB by SSS and hence
∠XCY ∼= ∠AOB. □
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Example 3. Given a segment AB, one can construct the perpendicular bisector of AB. Here is the picture:
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A great tool to learn these constructions is an app called Euclidea. You can use it in a web browser at
http://euclidea.xyz, or install it on your phone or tablet (it is available both for iOS and Android).

Note: Euclidea starts with a slightly more restrictive set of tools. Namely, it only allows drawing circles
with a given center and passing through a given point; thus, you can not use another segment as radius.

10. TRIANGLE INEQUALITIES

In this section, we use previous results about triangles to prove two important inequalities which hold for
any triangle.

We already know that if two sides of a triangle are equal, then the angles opposite to these sides are
also equal. The next theorem extends this result: in a triangle, if one angle is bigger than another, the side
opposite the bigger angle must be longer than the one opposite the smaller angle.

Theorem 16. In △ABC, if m∠A > m∠C, then we must have BC > AB.

http://euclidea.xyz


Proof. Assume by contradiction that it is not the case. Then either BC = AB or BC < AB.
But if BC = AB, then △ABC is isosceles, so by Theorem 10, m∠A =

m∠C as base angles, which gives a contradiction.
Now assume BC < AB, find the point M on AB so that BM = BC,

and draw the line MC. Then △MBC is isosceles, with apex at B. Hence
m∠BMC = m∠MCB (these two angles are denoted by x in the figure.)
On one hand, m∠C > x (this easily follows from Axiom 3). On the other
hand, since x is an external angle of △AMC, we have x > m∠A (by
External Angle Theorem 9). These two inequalities imply m∠C > m∠A,
which contradicts what we started with.

Thus, assumptions BC = AB or BC < AB both lead to a contradiction.
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□

The converse of the previous theorem is also true: opposite a longer side, there must be a larger angle.The
proof is left as an exercise.

Theorem 17 (Slant lines and perpendiculars). Let P be a point not on line l, and let Q ∈ l be such that
PQ ⊥ l. Then for any other point R on line l, we have PR > PQ, i.e. the perpendicular is the shortest distance
from a point to a line.

Proof. The proof easily follows from Theorem 16 since in the triangle △PQR the angle opposite of a slant
line is 90◦ and is larger than the angle opposite the perpendicular. □

Theorem 18. In △ABC, if BC > AB, then we must have m∠A > m∠C.

The following theorem doesn’t quite say that a straight line is the shortest distance between two points,
but it says something along these lines. This result is used throughout much of mathematics, and is referred
to as “the triangle inequality”.

Theorem 19 (The triangle inequality). In △ABC, we have AB +BC > AC.

Proof. Extend the line AB past B to the point D so that BD = BC, and join
the points C and D with a line so as to form the triangle ADC. Observe that
△BCD is isosceles, with apex at B; hence m∠BDC = m∠BCD. It is immediate
that m∠DCB < m∠DCA. Looking at △ADC, it follows that m∠D < m∠C; by
Theorem 16, this implies AD > AC. Our result now follows from AD = AB +BD
(Axiom 2) □
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11. SPECIAL QUADRILATERALS

In general, a figure with four sides (and four enclosed angles) is called a quadrilateral; by convention, their
vertices are labeled in order going around the perimeter (so, for example, in quadrilateral ABCD, vertex A
is opposite vertex C). In case it is unclear, we use ‘opposite’ to refer to pieces of the quadrilateral that are
on opposite sides, so side AB is opposite side CD, vertex A is opposite vertex C, angle ∠A is opposite angle
∠C etc.

Among all quadrilaterals, there are some that have special properties. In this section, we discuss three
such types.

A quadrilateral is called
• a parallelogram, if both pairs of opposite sides are parallel
• a rhombus, if all four sides have the same length
• a trapezoid, if one pair of opposite sides are parallel (these sides are called bases) and the other pair

is not.
These quadrilaterals have a number of useful properties.

Theorem 20. Let ABCD be a parallelogram. Then
• AB = DC, AD = BC
• m∠A = m∠C, m∠B = m∠D



• The intersection point M of diagonals AC and BD bisects each of them.

Proof. Consider triangles △ABC and △CDA (pay attention to the order
of vertices!). By Axiom 4 about alternate interior angles, angles ∠CAB
and ∠ACD are equal (they are marked by 1 in the figure); similarly, angles
∠BCA and ∠DAC are equal (they are marked by 2 in the figure). Thus,
by ASA, △ABC ∼= △CDA. Therefore, AB = DC, AD = BC, and m∠B =
m∠D. Similarly one proves that m∠A = m∠C.

Now let us consider triangles △AMD and △CMB. In these triangles,
angles labeled 2 are congruent (discussed above), and by Axiom 4, angles
marked by 3 are also congruent; finally, AD = BC by previous part. There-
fore, △AMD ∼= △CMB by ASA, so AM = MC, BM = MD. □
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Theorem 21. Let ABCD be a quadrilateral such that opposite sides are equal: AB = DC, AD = BC. Then
ABCD is a parallelogram.

Proof is left to you as a homework exercise. In fact, one can prove that all of the properties of parallelo-
gram are equivalent, and any of them can potentially be taken as a definition of a parallelogram:

1. Opposite sides are parallel;
2. Opposite sides are equal;
3. Opposite angles are equal;
4. One pair of opposite sides is parallel and equal;
5. Diagonals bisect each other.

Theorem 22. Let ABCD be a rhombus. Then it is a parallelogram; in par-
ticular, the intersection point of diagonals is the midpoint for each of them.
Moreover, the diagonals are perpendicular.

Proof. Since the opposite sides of a rhombus are equal, it follows from The-
orem 21 that the rhombus is a parallelogram, and thus the diagonals bisect
each other. Let M be the intersection point of the diagonals; since triangle
△ABC is isosceles, and BM is a median, by Theorem 11, it is also the
altitude. □
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12. MIDLINE OF A TRIANGLE AND A TRAPEZOID

A midline of a triangle △ABC is the segment connecting midpoints of two
sides.

Theorem 23. If DE is the midline of △ABC, then DE = 1
2AC, and DE 󰀂

AC.
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Proof. Continue line DE and mark on it point F such that DE = EF .
1. △DEB ∼= △FEC by SAS: DE = EF , BE = EC, ∠BED ∼=

∠CEF .
2. ADFC is a parallelogram: First, we can see that since △DEB ∼=

△FEC, then ∠BDE ∼= ∠CFE, and since they are alternate interior
angles, AD 󰀂 FC. Also, from the same congruency, FC = BD, but
BD = AD since D is a midpoint. Then, FC = DA. So we have
FC = DA and FC 󰀂 DA, and therefore ADFC is a parallelogram.

3. That gives us the second part of the theorem: DE 󰀂 AC. Also, since
ADFC is a parallelogram, AC = DF = 2 ·DE, and from here we
get DE = 1

2AC.
□
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Theorem 24 (Trapezoid midline). Let ABCD be a trape-
zoid, with bases AD and BC, and let E, F be midpoints
of sides AB, CD respectively. Then EF 󰀂 AB, and EF =
(AD +BC)/2.
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Idea of the proof: draw through point F a line parallel to
AB, as shown in the figure. Prove that this gives a paral-
lelogram, in which points E, F are midpoints of opposite
sides.
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13. CIRCLES

A circle with center O and radius r > 0 is the set of all points P in the plane such that OP = r. Tradition-
ally, one denotes circles by Greek letters: λ,ω . . . .

Given a circle λ with center O,
• A radius is any line segment from O to a point A on λ,
• A chord is any line segment between distinct points A, B on λ,
• A diameter is a chord that passes through O,

Recall that by Theorem 13, if O is equidistant from points A,B, then O must lie on the perpendicular
bisector of AB. We can restate this result as follows.

Theorem 25. If AB is a chord of circle λ, then the center O of this circle lies on the perpendicular bisector of
AB.

14. RELATIVE POSITIONS OF LINES AND CIRCLES

Theorem 26. Let λ be a circle of radius r with center at O and let l be a line. Let d be the distance from O to l,
i.e. the length of the perpendicular OP from O to l. Then:

• If d > r, then λ and l do not intersect.
• If d = r, then λ intersects l at exactly one point P , the base of the perpendicular from O to l. In this case,

we say that l is tangent to λ at P .
• If d < r, then λ intersects l at two distinct points.

Proof. First two parts easily follow from Theorem 17: slant line is longer than the perpendicular.
For the last part, it is easy to show that λ can not intersect l at more than 2 points. Proving that it does

intersect l at two points is very hard and requires deep results about real numbers. This proof will not be
given here. □

Note that it follows from the definition that a tangent line is perpendicular to the radius OP at point of
tangency. Converse is also true.

Theorem 27. Let λ be a circle with center O, and let l be a line through a point A on λ. Then l is tangent to λ

if and only if l ⊥
←→
OA

Proof. By definition, if l is the tangent line to λ, then it has only one common point with λ, and this point is
the base of the perpendicular from O to l; thus, OA is the perpendicular to l.

Conversely, if OA ⊥ l, it means that the distance from l to O is equal to the radius (both are given by
OA), so l is tangent to λ. □

Similar results hold for relative position of a pair of circles. We will only give part of the statement.

Theorem 28. Let λ1,λ2 be two circles, with centers O1, O2 and radiuses r1, r2 respectively; assume that r1 ≥ r2.
Let d = O1O2 be the distance between the centers of the two circles.



• If d > r1 + r2 or d < r1 − r2, then these two circles do not intersect.

• If d = r1 + r2 or d = r1 − r2 then these two circles have a unique common point, which lies on the line
O1O2

• If r1 − r2 < d < r1 + r2, then the two circles intersect at exactly two points.

We skip the proof.

Definition. Two circles are called tangent if they intersect at exactly one point.

15. ARCS AND ANGLES

Consider a circle λ with center O, and an angle formed by two rays from O. Then these two rays intersect
the circle at points A, B, and the portion of the circle contained inside this angle is called the arc subtended

by ∠AOB. We will sometimes use the notation
>
AB. We define the measure of the arc as the measure of the

corresponding central angle:
>
AB = m∠AOB.

Theorem 29. Let A, B, C be on circle λ with center O. Then m∠ACB = 1
2

>
AB. The angle ∠ACB is said to be

inscribed in λ.
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Proof. There are actually a few cases to consider here, since C may be
positioned such that O is inside, outside, or on the angle ∠ACB. We will
prove the first case here, which is pictured on the left.
Case 1. Draw diameter CD. Let x = m∠ACD, y = m∠BCD, so that
m∠ACB = x+ y.
Since OC is a radius of λ, we have that △AOC is isosceles triangle, thus
m∠A = x. Therefore, m∠AOD = 2x, as it is the external angle of △AOC.
Similarly, m∠BOD = 2y. Thus,

>
AB =

>
AD +

>
DB = 2x+ 2y. □

This theorem has a converse, which essentially says that all points C forming a given angle ∠ACB with
given points A,B must lie on a circle containing points A,B. Exact statement is given in the homework (see
problem 38).

As an immediate corollary, we get the following result:

Theorem 30. Let λ be a circle with diameter AB. Then for any point C on this circle other than A,B, the angle
∠ACB is the right angle. Conversely, if a point C is such that ∠ACB is the right angle, then C must lie on the
circle λ.

16. THALES THEOREM

Theorem 31 (Thales Theorem). Let points A′, B′ be on the sides of angle
∠AOB as shown in the picture. Then lines AB and A′B′ are parallel if
and only if

OA

OB
=

OA′

OB′

In this case, we also have OA
OB = AA′

BB′

O

A
A′

B B′



We have already seen and proved a special case of this theorem when discussing the midline of a triangle.
The proof of this theorem is unexpectedly hard. In the case when OA

OA′ is a rational number, one can use
arguments similar to those we did when talking about midline. The case of irrational numbers is harder yet.
We skip the proof for now; it will be discussed in Math 9.

As an immediate corollary of this theorem, we get the following result.

Theorem 32. Let points A1, . . . , An and B1, . . . Bn on the sides of an angle
be chosen so that A1A2 = A2A3 = · · · = An−1An, and lines A1B1, A2B2,
. . . are parallel. Then B1B2 = B2B3 = · · · = Bn−1Bn.

O

A1

A2

A3

B1 B2 B3

Proof of this theorem is left to you as exercise.

17. SIMILAR TRIANGLES

Definition. Two triangles △ABC, △A′B′C ′ are called similar if

∠A ∼= ∠A′, ∠B ∼= ∠B′, ∠C ∼= ∠C ′

and the corresponding sides are proportional, i.e.

AB

A′B′ =
AC

A′C ′ =
BC

B′C ′

The common ratio AB
A′B′ =

AC
A′C′ =

BC
B′C′ is sometimes called the similarity coefficient.

There are some similarity tests:

Theorem 33 (AAA similarity test). If the corresponding angles of triangles △ABC, △A′B′C ′ are equal:

∠A ∼= ∠A′, ∠B ∼= ∠B′, ∠C ∼= ∠C ′

then the triangles are similar.

Theorem 34 (SSS similarity test). If the corresponding sides of triangles △ABC, △A′B′C ′ are proportional:

AB

A′B′ =
AC

A′C ′ =
BC

B′C ′

then the triangles are similar.

Theorem 35 (SAS similarity test). If two pairs of corresponding sides of triangles △ABC, △A′B′C ′ are
proportional:

AB

A′B′ =
AC

A′C ′

and ∠A ∼= ∠A′ then the triangles are similar.

Proofs of all of these tests can be obtained from Thales theorem.

18. PYTHAGOREAN THEOREM

Pythagorean theorem has dozens of proofs, but most of them are based on the notion of area and thus
can’t be considered completely rigorous until we give a definition of area and prove properties we normally
take for granted, such as that when we cut a figure in two, the area of the original figure is equal to sum of
areas of the pieces. These are actually rather hard to prove. The proof below, based on similar triangles, is
one of the shortest rigorous proofs.



Theorem 36 (Pythagorean theorem). Let ABC be a right triangle, ∠C =
90◦, and let CD be the altitude. Denote by a, b, c the lengths of the sides of
this triangle: a = BC, b = AC, c = AB. Then

c2 = a2 + b2

Proof. You can complete the proof yourself by following the following
logic

1. Show that triangles △ACD, △ABC are similar and deduce from
this that AD = b2/c.

2. Similarly, prove that BD = a2/c
3. Now, since AB = c = AD +DB, prove c2 = a2 + b2.

□

A B

C

D

b a

HOMEWORK

1. It is important that you know some geometry notation.
(a) What does the symbol 󰀂 mean? How do you pronounce it? How would you read “a 󰀂 b”?
(b) What does the symbol ⊥ mean? How would you say “a ⊥ b”?

(c) Suppose you have two points X and Y . What is the difference between XY ,
←→
XY ,

−→
XY ? What

are each of these things called?
(d) Given three points E, F , G, what does EF + FG mean?
(e) Given four points A, B, C, D, what does m∠ADC +m∠BDC mean? If I tell you m∠ADC +

m∠BDC = 180◦, does that tell you any information about m∠ADC or m∠BDC?
(f) What does the symbol △ mean? For example, if A and B and C are points, what is △ABC?

2. (a) What is a proof? Give an example. Can you come up with an example that is not about geome-
try?

(b) What is an axiom? Give an example. Can you come up with an example that is not about
geometry?

3. In this problem, you will make diagrams. Part of the purpose of this exercise is so that, when you
think about geometry, the pictures in your notes or in your mind aren’t all just the diagrams I draw
out for you in class or on classwork sheets. You have to be able to draw or visualize configurations of
lines other than the way they’re set up in axiom 4, for example.
(a) Given lines a, b, c, is it possible that a 󰀂 b and ¬(b 󰀂 c) but a 󰀂 c? Draw a diagram and then

explain your reasoning on how to answer this question. (“explain” means, of course, in writing.)
(b) Suppose we have parallel lines l,m. Let A,B,C be points on l, with B between A,C. Let X,Y, Z

be points on m, with Y between X,Z. Is it possible for lines
←→
AX,

←→
BY ,

←→
CZ to all intersect at one

point? Draw a diagram of what this might look like.
(c) Consider the diagram you drew in the previous part, with the lines l,m and the six points, and

the three cross-lines that intersect at a point. Now consider the lines
←→
AZ,

←→
CX. Do these two

lines intersect at a point on
←→
BY ? Draw a diagram where this is the case, and then draw a second

diagram where this is not the case.
(d) Draw a rectangle that’s not a square, and draw it so that one of the bases is horizontal. Then

draw one of the rectangle’s diagonals. Notice that, of the two right angles formed at the rectan-
gle’s base, the rectangle’s diagonal splits one of those angles into two smaller angles. Which of
the two angles is bigger - the one below the diagonal, or the one above the diagonal? Draw a
second rectangle where the opposite relation holds true (for example, if the lower angle was big-
ger in your first rectangle, draw a second rectangle where the lower angle split by the diagonal
is smaller).

4. Can you formulate Axiom 4 without referring to the picture (i.e. without using any statement such
as “angles ∠1, ∠2 are as shown in the figure below”? You will have to introduce a number of points
and have very clear notations.

5. The following logic and geometric statements come in equivalent pairs. Each logic statement has
exactly one geometric statement that is equivalent to it. Match these statements into their equivalent



pairs, with an explanation of why the pairs you chose are equivalent. [Note: the quantifier ∃! stands
for “there exists a unique. . . ”, and ∅ is an empty set.]
Geometric statements:
(a) For any two distinct points there is a unique line containing these points.
(b) Given a line and a point not on the line there exists a unique line though the given point that is

parallel to the given line.
(c) If two lines are parallel and another line intersects one of them, then it intersects the other one

as well.
(d) If two lines are parallel to the same line, then they are parallel to each other
Logic statements:
(a) ∀l ∀m such that l 󰀂 m [∀n (n ∩ l ∕= ∅ → n ∩m ∕= ∅)]
(b) ∀A ∀B such that A ∕= B [∃! l (A ∈ l ∧B ∈ l)]
(c) ∀l ∀m [(∃n such that n 󰀂 l ∧ n 󰀂 m) → (l 󰀂 m)]
(d) ∀l ∀A such that A ∕∈ l [∃! m (A ∈ m ∧m 󰀂 l)]

6. (Parallel and Perpendicular Lines) Part of the spirit of Euclidean geometry is that parallelism and
perpendicularity are special concepts; Theorem 6, for example, is generally considered part of the
heart of Euclidean geometry. For this problem, prove the following theorems presented in the First
Theorems section, using only the information from the Basic Objects and First Postulates sections.
Axiom 4 will be of key importance.
(a) Study the proof of Theorem 2 and draw a diagram that illustrates it.
(b) Study the proof of Theorem 3.
(c) Prove Theorem 5.
(d) Prove Theorem 6.
(e) Prove Theorem 7.

7. Complete the proof of Theorem 8, about sum of angles of a triangle.
8. What is the sum of angles of a quadrilateral? of a pentagon?
9. Notice that SSA and AAA are not listed as congruence rules.

(a) Describe a pair of triangles that have two congruent sides and one congruent angle but are not
congruent triangles.

(b) Describe a pair of triangles that have three congruent angles but are not congruent triangles.
10. Prove that the following two properties of a triangle are equivalent:

(a) All sides have the same length.
(b) All angles are 60◦.

A triangle satisfying these properties is called equilateral.
11. A triangle in which two sides are congruent is called isosceles. Such triangles have many special

properties.

(a) Let △ABC be an isosceles triangle, with AB ∼= BC. Sup-
pose D is a point on AC such that AD ∼= DC (such point is
called midpoint of the segment). Prove that then, △BD ∼=
△CBD and deduce from this that ∠DBA ∼= ∠DBC, and
∠A ∼= ∠C. What can we say about ∠ADB?

(b) Conversely, show that if △ABC is such that ∠A ∼= ∠C,
then △ABC is isosceles, with AB ∼= BC. A C

B

D

12. (Slant lines and perpendiculars) Let P be a point not on line l, and let Q ∈ l be such that PQ ⊥ l.
Prove that then, for any other point R on line l, we have PR > PQ, i.e. the perpendicular is the
shortest distance from a point to a line.

Note: you can not use the Pythagorean theorem for this, as we haven’t yet proved it! Instead, use
Theorem 16.

13. (Angle bisector). Define a distance from a point P to line l as the length of the perpendicular from P
to l (compare with the previous problem).



Let
−→
OM be the angle bisector of ∠AOB, i.e. ∠AOM ∼=

∠MOB.

(a) Let P be any point on
−→
OM , and PQ, PR – perpen-

diculars from P to sides
−→
OA,

−→
OB respectively. Use

ASA axiom to prove that triangles △OPR, △OPQ
are congruent, and deduce from this that distances

from P to
−→
OA,

−→
OB are equal.

(b) Prove that conversely, if P is a point inside angle
∠AOB, and distances from P to the two sides of
the angle are equal, then P must lie on the angle

bisector
−→
OM

O
A

B

M

Q

R
P

These two statements show that the locus of points equidistant from the two sides of an angle is
the angle bisector

14. Prove that in any triangle, the three angle bisectors intersect at a single point (compare with the
similar fact about perpendicular bisectors)

15. Given a triangle △ABC, let D be a point on the line AB, so that A is between D and B. In this
situation, angle ∠DAC is called an external angle of △ABC. Prove that m∠DAC = m∠B + m∠C
(in particular this implies that m∠DAC > m∠B, and similarly for ∠C).

A B

C

D

16. (Perpendicular bisector) Let AB be a line segment. The perpendicular bisector L of AB is the line that
passes through the midpoint M of AB and is perpendicular to AB.
(a) Prove that for any point P on L, triangles △APM and △BPM are congruent. Deduce from this

that AP = BP .
(b) Conversely, let P be a point on the plane such that AP = BP . Prove that then P must be on L.

Taken together, these two statements say that a point P is equidistant from A,B if and only if it
lies on the perpendicular bisector L of segment AB. Another way to say it is that the locus of all the
points equidistant from A,B is the perpendicular bisector of AB.

17. Show that for any triangle △ABC, the perpendicular bisectors of the three sides intersect at a single
point, and this point is equidistant from all three vertices of the triangle. [Hint: consider the point
where two of the bisectors intersect. Prove that this point is equidistant from all three vertices.]

Note: the intersection point can be outside the triangle.
18. Let P be a point not on line l, and A ∈ l be the base of perpendicular from P to l: AP ⊥ l. Prove that

for any other point B on l, PB > PA (“perpendicular is the shortest distance”). Note: you can not
use Pythagorean theorem as we have not proved it yet; instead, try using Theorem 16 (opposite the
larger angle there is a longer side).

19. Let △ABC be a right triangle with right angle ∠A, and let D be the intersection of the line parallel
to AB through C with the line parallel to AC through B.
(a) Prove △ABC ∼= △DCB
(b) Prove △ABC ∼= △BDA
(c) Prove that AD is a median of △ABC.



A B

C D

20. Let △ABC be a right triangle with right angle ∠A, and let D be the midpoint of BC. Prove that
AD = 1

2BC.
21. Let l1, l2 be the perpendicular bisectors of side AB and BC respectively of △ABC, and let F be the

intersection point of l1 and l2. Prove that then F also lies on the perpendicular bisector of the side
BC. [Hint: use Theorem 13.]

22. Prove Theorem 14.
23. Let the angle bisectors from B and C in the triangle △ABC intersect each other at point F . Prove

that
←→
AF is the third angle bisector of △ABC. [Hint: use Theorem 15]

24. Given triangle △ABC, draw through each vertex a line parallel to the opposite side. Denote the
vertices of the resulting triangle by D, E, F , as shown in the figure below.

E

F

D

A

C

B

(a) Prove that △ABC ∼= △BAF (pay attention to the order of vertices). Similarly one proves that
all four small triangles in the picture are congruent.

(b) Prove that AB 󰀂 ED and AB = 1
2ED.

(c) Prove that perpendicular bisectors of sides of △DEF are altitudes of △ABC.
(d) Show that in any triangle, the three altitudes meet at a single point.

25. (Parallelogram) Who doesn’t love parallelograms?
(a) Prove Theorem 21.
(b) Prove that if in a quadrilateral ABCD we have AD = BC, and AD 󰀂 BC, then ABCD is a

parallelogram.
26. Prove that in a parallelogram, sum of two adjacent angles is equal to 180◦:

m∠A+m∠B = m∠B +m∠C = · · · = 180◦

27. (Rectangle) A quadrilateral is called rectangle if all angles have measure 90◦.
(a) Show that each rectangle is a parallelogram.
(b) Show that opposite sides of a rectangle are congruent.
(c) Prove that the diagonals of a rectangle are congruent.
(d) Prove that conversely, if ABCD is a parallelogram such that AC = BD, then it is a rectangle.

28. (Distance between parallel lines)
Let l,m be two parallel lines. Let P ∈ l, Q ∈ m be two points such that
←→
PQ⊥ l (by Theorem 6, this implies that

←→
PQ⊥ m).

Show that then, for any other segment P ′Q′, with P ′ ∈ l, Q′ ∈ m and
←→
P ′Q′⊥ l, we have PQ = P ′Q′. (This common distance is called the distance
between l, m.) m

lP

Q

P ′

Q′

29. The following statements about a parallelogram can be used as its definition, i.e. you can prove any
of them from any other. Can you show how?



We have done some of the proofs already. Establish which other statements need to be proven to
show the equivalence of all of these statements, and try to prove them. For example, Theorem 21
proves (b) ⇒ (a), and Theorem 20 proves (a) ⇒ (b), (a) ⇒ (c), and (a) ⇒ (d); (e) ⇒ (a) is proven
in Problem 4b.
(a) Opposite sides are parallel.
(b) Opposite sides are congruent.
(c) Opposite angles are congruent.
(d) Diagonals bisect each other.
(e) One pair of opposite sides is parallel and congruent.

30. Show that if we mark midpoints of each of the three sides of a triangle, and connect these points, the
resulting segments will divide the original triangle into four triangles, all congruent to each other.

31. (Altitudes intersect at single point)
The goal of this problem is to prove that three altitudes of a triangle intersect at a single point.
Given a triangle △ABC, draw through each vertex a line parallel to the
opposite side. Denote the intersection points of these lines by A′, B′, C ′ as
shown in the figure.

(a) Prove that A′B = AC (hint: use parallelograms!)
(b) Show that B is the midpoint of A′C ′, and similarly for other two

vertices.
(c) Show that altitudes of △ABC are exactly the perpendicular bisec-

tors of sides of △A′B′c′.
(d) Prove that the three altitudes of △ABC intersect at a single point.

A

B

C

A′

B′

C ′

32. (Trapezoid Midline)

Let ABCD be a trapezoid, with bases AD and BC, and let
E, F be midpoints of sides AB, CD respectively.
Prove that then EF 󰀂 AB, and EF = (AD +BC)/2.

A

B
C

D

E
F

[Hint: draw through point F a line parallel to AB, as
shown in the figure. Prove that this gives a parallelogram,
in which points E, F are midpoints of opposite sides. ]

A

B
C

D

E
F

33. Without using Theorem 26, prove that a circle can not have more than two intersections with a line.
[Hint: assume it has three intersection points, and use Theorem 25 to get a contradiction.]

34. Prove that given three points A,B,C not on the same line, there is a unique circle passing through
these points. This circle is called the circumscribed circle of △ABC. Explain how to construct this
circle using ruler and compass.

35. Show that if a circle ω is tangent to both sides of the angle ∠ABC, then the center of that circle must
lie on the angle bisector. [Hint: this center is equidistant from the two sides of the circle.] Show that
conversely, given a point O on the angle bisector, there exists a circle with center at this point which
is tangent to both sides fo the angle.

36. Use the previous problem to show that for any triangle, there is a unique circle that is tangent to all
three sides (inscribed circle).

37. Given a circle λ with center A and a point B outside this circle, construct the tangent line l from B
to λ using straightedge and compass. How many solutions does this problem have?

[Hint: let P be the tangency point (which we haven’t contructed yet). Then by Theorem 27,
∠APB is a right angle. Thus, by Theorem 30, it must lie on a circle with diameter OP ]

38. (Angle Theorems) Let’s study Theorem 29 in a bit more detail!



(a) Prove the converse of Theorem 29: namely, if λ is a circle cen-
tered at O and A, B, are on λ, and there is a point C such that
m∠ACB = 1

2m∠AOB, then C lies on λ. [Hint: let C ′ be the
point where line AC intersects λ. Show that then, m∠ACB =
m∠AC ′B, and show that this implies C = C ′.]

(b) Let A, B be on circle λ centered at O and m the tangent to λ at
A, as shown on the right. Let C be on m such that C is on the

same side of
←→
OA as B. Prove that m∠BAC = 1

2m∠BOA. [Hint:
extend OA to intersect λ at point D so that AD is a diameter of
λ. What arc does ∠DAB subtend?]

O
A

B

C

39. Here is a modification of Theorem 29.
Consider a circle λ and an angle whose vertex C is outside this
circle and both sides intersect this circle at two points as shown
in the figure. In this case, intersection of the angle with the circle
defines two arcs:

>
AB and

>
A′B′.

Prove that in this case, m∠C = 1
2 (
>
AB −

>
A′B′).

[Hint: draw line AB′ and find first the angle ∠AB′B. Then notice
that this angle is an exterior angle of △ACB′.]

O

C

A

B

A′

B′

40. Can you suggest and prove an analog of the previous problem, but when the point C is inside the
circle (you will need to replace an angle by two intersecting lines, forming a pair of vertical angles)?

41. Complete levels α, β in Euclidea.
42. Prove Theorem 32 (using Thales Theorem). Hint: let k = OB1

OA1
; show that then BiBi+1 = kAiAi+1.

43. Using Theorem 32, describe how one can divide a given segment into 5 equal parts using ruler and
compass.

44. Given segments of length a, b, c, construct a segment of length ab
c using ruler and compass.

45. Let ABC be a right triangle, ∠C = 90◦, and let CD be the altitude.
Prove that triangles △ACD, △CBD are similar. Deduce from this that
CD2 = AD ·DB.

A B

C

D

46. Let M be a point inside a circle and let AA′, BB′ be two chords through
M . Show that then AM ·MA′ = BM ·MB′. [Hint: use inscribed angle
theorem to show that triangles △AMB, △B′MA′ are similar. ]

A

B

A′

B′

M

47. Let AA′, BB′ be altitudes in the acute triangle △ABC.
(a) Show that points A′, B′ are on a circle with diameter AB.
(b) Show that ∠AA′B′ = ∠ABB′, ∠A′B′B = ∠A′AB
(c) Show that triangle △ABC is similar to triangle △A′B′C.

A B

C

B′

A′

48. Complete the proof of Pythagorean Theorem 36.



49. Consider the trapezoid with bases AD = a, BC = b. Let M be the
intersection point of diagonals, and let PQ be the segment parallel to
the bases through M .

(a) Show that point M divides each of diagonals in proportion a : b,
e.g. AM : MC = a : b.

(b) Show that points P , Q divide sides of the trapezoid in proportion
a : b.

(c) Show that PQ = 2ab
a+b . [Hint: compute PM , MQ separately and

add.]
A

B C

D

M
P Q

a

b

50. Given two circles with centers O1, O2 and radiuses r1, r2 respectively,
construct (using straightedge and compass) a common tangent line to
these circles. You can assume that circles do not intersect:
O1O2 > r1 + r2 and that r2 > r1.

O1 O2

[Hint: assume that we have such a tangent line, call it l. Then distance from that line to O1 is r1,
and distance to O2 is r2. Thus, if we draw a line l′ parallel to l but going through O1, the distance
from l′ to O2 is . . . and thus l′ is tangent to . . . ]


