1. Parallel and perpendicular lines

Theorem 6. Given a line l and point P not on l, there exists exactly one line m through P which is parallel to l.
Proof. Existence.
Let us draw a line k through P which inersects l. Now draw a line m through P such that alternate interior angles are equal: $m \angle 1=m \angle 2$. Then, by Axiom 4 (alternate interior angles), we have $m \| l$.

Uniqueness.

To show that such a line is unique, let us assume that there are two different lines, m_{1}, m_{2} through P both parallel to l. By Theorem 2, this would imply $m_{1} \| m_{2}$. This gives a contradiction, because P is on both lines, but parallel lines cannot have any points in common, by definition!

Theorem 7. Given a line l and a point P not on l, there exists a unique line m through P which is perpendicular to l.

2. Sum of angles of a triangle

Definition. A triangle is a figure consisting of three distinct points A, B, C (called vertices) and line segments $\overline{A B}, \overline{B C}, \overline{A C}$. We denote such a triangle by $\triangle A B C$.

Similarly, a quadrilateral is a figure consisting of 4 distinct points A, B, C, D and line segments $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D A}$ such that these segments do not intersect except at A, B, C, D.
Theorem 8. The sum of measures of angles of a triangle is 180°.
Proof. Draw a line m through B parallel to $\overleftrightarrow{A C}$ (possible by Theorem 6).

[By the way: α is a Greek letter, pronounced "alpha"; mathematicians commonly use Greek letters to denote angles]

Then $m \angle 2=m \angle 1$ as alternate interior angles, and $m \angle 4=m \angle 3$, also alternate interior angles. On the other hand, by Axiom 3 (angles add up), we have

$$
m \angle 4+m \angle \alpha+m \angle 2=180^{\circ}
$$

Thus, $m \angle 3+m \angle \alpha+m \angle 1=180^{\circ}$.

Theorem 9. For a triangle $\triangle A B C$, let D be a point on continuation of side $A C$, so that C is between A and D. Then $m \angle B C D=m \angle A+m \angle B$. (Such an angle is called the exterior angle of triangle $A B C$.)
Theorem 10. Sum of angles of a quadrilateral is equal to 360°.

3. Polygons

The total sum of the angles of a polygon is dependent on the number of sides. The sum of the exterior angles of a polygon is always 360 and does not depend on the number of sides of the polygon.
Theorem 11. The sum of the measures of the interior angles of a polygon having n sides is $180(n-$ $2)$.

Theorem 12. The sum of the measures of the exterior angles of a polygon add up to 360 .
A polygon is regular if all its sides are congruent. All its angles will also be congruent, we also call these angles equi-angular. Once you know the sum of all its angles, can you calculate the angle of a regular polygon?

4. Congruence

In general, two figures are called congruent if the have same shape and size. We use symbol \cong for denoting congruent figures: to say that M_{1} is congruent to M_{2}, we write $M_{1} \cong M_{2}$.

Precise definition of what "same shape and size" means depends on the figure:

- For line segments, it means that they have the same length: $\overline{A B} \cong \overline{C D}$ is the same as $A B=C D$.
- For angles, it means that they have the same measure: $\angle A \cong \angle B$ is the same as $m \angle A=$ $m \angle B$.
- For triangles, it means that the corresponding sides are equal and corresponding angles are equal: $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ is the same as
$A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}, A C=A^{\prime} C^{\prime}, m \angle A=m \angle A^{\prime}, m \angle B=m \angle B^{\prime}, m \angle C=m \angle C^{\prime}$.
Note that for triangles, the notation $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ not only tells that these two triangles are congruent, but also shows which vertex of the first triangle corresponds to which vertex of the second one. For example, $\triangle A B C \cong \triangle P Q R$ is not the same as $\triangle A B C \cong \triangle Q P R$.

5. Congruence tests for triangles

By definition, to check that two two triangles are congruent, we need to check that corresponding angles are equal and corresponding sides are equal; thus, we need to check 6 equalitites. However, it turns out that in fact, we can do with fewer checks.

Axiom 5 (Angle-Side-Angle Congruence Axiom). If $m \angle A=m \angle A^{\prime}, m \angle B=m \angle B^{\prime}$ and $A B=A^{\prime} B^{\prime}$, then $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$.

This axiom is commonly referred to as ASA axiom.
One can also try other ways to define a triangle by three pieces of information, such as three sides (SSS), three angles (AAA), or two sides and an angle. For the two sides and an angle, there are two versions, one in which the two sides are adjacent to the given angle (SAS) and the other in which one of the given sides is opposite to the given angle (SSA). It turns out that SSS and SAS do indeed define a triangle:
Axiom 6 (SSS Congruence Axiom). If $A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}$ and $A C=A^{\prime} C^{\prime}$ then $\triangle A B C \cong$ $\triangle A^{\prime} B^{\prime} C^{\prime}$.

Axiom 7 (SAS Congruence Axiom). If $A B=A^{\prime} B^{\prime}, A C=A^{\prime} C^{\prime}$ and $m \angle A=m \angle A^{\prime}$, then $\triangle A B C \cong$ $\triangle A^{\prime} B^{\prime} C^{\prime}$.

These congruence rules can actually be derived by introducing additional concepts, so we do not really need to take them as axioms. However, I would rather not spend time on this (proof of SSS takes some time), so I decided to take them as axioms.

6. IsOSCELES TRIANGLES

A triangle is isosceles if two of its sides have equal length. The two sides of equal length are called legs; the point where the two legs meet is called the apex of the triangle; the other two angles are called the base angles of the triangle; and the third side is called the base.

While an isosceles triangle is defined to be one with two sides of equal length, the next theorem tells us that is equivalent to having two angles of equal measure.

Theorem 13 (Base angles equal). If $\triangle A B C$ is isosceles, with base $A C$, then $m \angle A=m \angle C$.
Conversely, if $\triangle A B C$ has $m \angle A=m \angle C$, then it is isosceles, with base $A C$.
Proof. Assume that $\triangle A B C$ is isoceles, with apex B. Then by SAS, we have $\triangle A B C \cong \triangle C B A$. Therefore, $m \angle A=m \angle C$.

The proof of the converse statement is left to you as a homework exercise.
In any triangle, there are three special lines from each vertex. In $\triangle A B C$, the altitude from A is perpendicular to $B C$ (it exists and is unique by Theorem 7); the median from A bisects $B C$ (that is, it crosses $B C$ at a point D which is the midpoint of $B C$); and the angle bisector bisects $\angle A$ (that is, if E is the point where the angle bisector meets $B C$, then $m \angle B A E=m \angle E A C$).

For general triangle, all three lines are different. However, it turns out that in an isosceles triangle, they coincide.
Theorem 14. If B is the apex of the isosceles triangle $A B C$, and $B M$ is the median, then $B M$ is also the altitude, and is also the angle bisector, from B.
Proof. Consider triangles $\triangle A B M$ and $\triangle C B M$. Then $A B=C B$ (by definition of isosceles triangle), $A M=C M$ (by definition of midpoint), and $m \angle M A B=m \angle M C B$ (by Theorem 13). Thus, by SAS axiom, $\triangle A B M \cong \triangle C B M$. Therefore, $m \angle A B M=m \angle C B M$, so $B M$ is the angle bisector.
Also, $m \angle A M B=m \angle C M B$. On the other hand, $m \angle A M B+$ $m \angle C M B=m \angle A M C=180^{\circ}$. Thus, $m \angle A M B=m \angle C M B=$ $180^{\circ} / 2=90^{\circ}$.

Homework

1. Show that if, in a quadrilateral $A B C D$, diagonally opposite angles are equal ($m \angle A=m \angle C$, $m \angle B=m \angle D$), then opposite sides are parallel. [Hint: show first that $m \angle A+m \angle B=180^{\circ}$.]
2. The reflection law states that the angles formed by the incoming light ray and the reflected one with the surface of the mirror are equal: $m \angle 1=m \angle 2$

Using this law, show that a corner made of two perpendicular mirrors will reflect any light ray exactly back: the reflected ray is parallel to the incoming one:

This property - or rather, similar property of corners in 3-D - is widely used: reflecting road signs (including stop signs), tail lights of a car, and reflecting strips on clothing are all constructed out of many small reflecting corners so that they reflect the light of a car headlamp exactly back to the car.
3. Given that $\angle R \cong \angle T$ and $\overline{S R} \cong \overline{S T}$, prove that $\triangle S R H \cong \triangle S T E$.
4. Given that $\overline{T E} \perp$ $\overline{R S}$, that $\overline{R H} \perp \overline{S T}$, and $\overline{E W} \cong \overline{H W}$, prove that $\triangle E W R \cong$ $\triangle H W T$

5. Given that $\overline{P M}$ is the altitude to $\overline{K L}$ and $\overline{P K} \cong \overline{P K}$, prove that M is the midpoint of $\overline{K L}$.
6. Given that $\overline{P M}$ is the median to $\overline{K L}$ and
 $\overline{K P} \cong \overline{L P}$, prove that $\overline{P M} \perp \overline{K L}$.
7. Let $\triangle A B C$ be such that all sides have equal length. Prove that then $m \angle A=m \angle B=$ $m \angle C=60^{\circ}$. [Such a triangle is called equilateral.]
8. Prove the second statement of Theorem 13 : if $\triangle A B C$ has $m \angle A=m \angle C$, then it is isosceles, with base $A C$.
9. Let $A B C D$ be a quadrilateral such that $A B=B C=$ $C D=A D$ (such a quadilateral is called rhombus). Let M be the intersection point of $A C$ and $B D$.
(a) Show that $\triangle A B C \cong \triangle A D C$
(b) Show that $\triangle A M B \cong \triangle A M D$
(c) Show that the diagonals are perpendicular and that the point M is the midpoint of each of the diagonals.

