MATH 6: HANDOUT XIX

 COORDINATE GEOMETRY 4: FUNCTIONS AND TRANSFORMATIONS
Functions

A function is a mathematical construct that takes an input and gives a unique value as an output. For example, consider the following function:

$$
f(x)=2 x+1
$$

This function f can take any number, and it will give us an output based on its definition. For example, if we input 2 to our function we would get $f(2)=2 \times 2+1=5$. We can repeat this for many numbers:

$$
f(0)=2 \times 0+1=1, \quad f(3.5)=2 \times 3.5+1=8, \quad \text { etc... }
$$

A function may be much more complex and it can have many rules as long as it gives us a single result for each input that we feed it with.

Graph of a function: A great way to understand the behavior of a function is by studying its graph. To do this, we will use the coordinate geometry that we had learned previously. If we decide to write

$$
y=f(x),
$$

then we can make a graph of this function in the same way as we made graphs for other objects in the previous classes. For example, the function which we defined earlier, $f(x)=2 x+1$, would now be written as

$$
y=2 x+1,
$$

which we know corresponds to the equation of a line. Other interesting functions with nice graphs are $f(x)=x^{2}$, which is a parabola, and $f(x)=|x|$.

Transformations: Having these basic graphs, we can produce new graphs, by doing certain transformations of the equations. Here are two of them.

- Vertical Translations: Adding constant c to the right-hand side of equation shifts the graph by c units up (if c is positive; if c is negative, it shifts by $|c|$ down.)

- Horizontal Translations: Adding constant c to x shifts the graph by c units left if c is positive; if c is negative, it shifts by c right.

Homework

1. (a) Sketch the graphs of functions $y=|x+1|$ and $y=-x+0.25$ in the same coordinate plane.
(b) How many solutions for x does the following equation have:

$$
|x+1|=-x+0.25
$$

Note: you do not have to find the solutions, you just need to know how many solutions it will have.
2. Graph a sketch of the following functions:
(a) $y=|x|+1$
(b) $y=|x+1|$
(c) $y=|x-5|+1$
3. Graph the function $f(x)=x^{3}+x^{2}-2 x$ on a graph that goes from -3 to 3 . Hint: First, tabulate the corresponding value of $f(x)$ every 0.5 steps and graph these points. Then, try to connect them continuously.
4. Sketch the following function:

$$
f(x)=\left\{\begin{array}{lll}
x^{2} & \text { if } & x \leq 0 \\
x & \text { if } & x>0
\end{array}\right.
$$

5. The following coordinate plane shows the graph of a function $f(x)$. Draw the graph of the function $g(x)=f(x)+2$ on the same coordinate plane. Note: you do not need to know how function f is defined.

6. The following coordinate plane shows the graph of a function $f(x)$. Draw the graph of function $g(x)=f(x-2)$ on the same coordinate plane. Note: you do not need to know how function f is defined.

*7. One of the most important functions in trigonometry is the $\sin (x)$ function. Later on, you will learn how it is defined and how to use it. For now, use a calculator to tabulate some values of the function and try to sketch it from -10 to 10 . How many times does it intersect the x axis in this range?
*8. Sketch the following functions:
(a) $y=|x|+|x+1|$
(b) $y=|x-1|+|x+1|$

Hint: First, draw the graph for each of the terms being added. Then, try to add the graphs.

