MATH 6: HANDOUT 26 SOLVING EQUATIONS AND INEQUALITIES

Solving inequalities involving negative numbers

Today we discussed inequalities and their solutions, discussing how one solves inequalities involving negative numbers. The rule here is

$$
a<b \Longleftrightarrow(-a)>(-b)
$$

(note that the sign of inequality is reversed!). For example, $3<5$, but $-3>-5$.
More generally, if we multiply or divide both sides of an inequality by a negative number, we need to change the sign of inequality, replacing $<$ by $>$ and vice versa. For example, to solve $-3 x>-6$, we divide both sides by -3 and change $>$ to $<$, giving $x<2$.

Products

The following rules are frequently used when dealing with equations or inequalities where the left-hand side is a product of two factors:

- A product of two numbers is zero if and only if one of them is zero:

$$
a b=0 \Longleftrightarrow(a=0) \text { OR }(b=0)
$$

- A product of two numbers is positive if and only if both numbers are positive or both numbers are negative:

$$
a b>0 \Longleftrightarrow(a>0 \text { AND } b>0) \text { OR }(a<0 \text { AND } b<0)
$$

- A product of two numbers is negative if and only if one of numbers is positive and the other one is negative:

$$
a b<0 \Longleftrightarrow(a>0 \text { AND } b<0) \text { OR }(a<0 \text { AND } b>0)
$$

Homework

1. (This problem is for students who have some difficulty with negative numbers and need extra practice).

Compute the following expressions:

$$
\begin{array}{lll}
-3-(-2) & -3-3 & ((-4) \times 6)-7 \\
(-6) \div(-2)+3 & (-2) \div(-3) & (-4) \times(-7) \div(+9) \\
(-4)-(-3)+(-5) & (-6)+(-2) \div(-3) &
\end{array}
$$

2. Solve the following inequalities
(a) $-x<2$
(b) $2-3 x>5$
(c) $3 x+1<5 x+7$
(d) $1+5 x<3 x$
(e) $x-1<x-7$
3. Solve the following equations and inequalities:
(a) $(x-1)(x-2)=0$
(b) $x(x+1)<0$
(c) $\frac{1}{x}>2$
(d) $x^{2}-4=0$
(e) $\frac{x}{x+1}>1$
[Hints: In (c), multiple the inequality by x. You need to be careful, whether x is positive or negative. In (e), consider separately two cases: $x+1>0$ and $x+1<0$.]
4. In the figure below, each symbol stands for a number. The sum of numbers in each column or row is written next to the column or row - except for the second column, where the sum is not known. Can you find this missing sum?

\bigcirc	\sum	A	-	96
Δ	\odot	\odot	\odot	92
is	ξ	Ξ	Δ	140
\odot	Δ	\bigcirc	$\hat{3}$	108
108	?	108	96	

5. Old MacDonald raises sheep and chickens on his farm. His livestock has a total of 55 heads and 142 legs among them (not counting the farmer!). How many chickens and how many sheep does he have?
6. Mr. Sim jogs at 9 km per hour over a certain distance and walks back the same distance at 6 km per hour. What is his average speed? [Hint: the answer $(6+9) / 2=7.5$ is wrong!).
7. Show that in a class of 40 students, there must be two students whose birthdays are less than 10 days apart. '
8. January 1, 2018 was a Monday. What is the next year in which January 1 will fall on a Monday? (Mathcounts)
9. Find $A B$ (Mathcounts).

10. Three cubes are stacked as shown. If the cubes have edge 1,2 and 3 what is $A B$? (Mathcounts)

