MATH 6: HANDOUT 24 FACTORIZATION AND SYSTEMS OF LINEAR EQUATIONS

1. Factorization

When handling with large algebraic expressions, it is often possible to simplify them. One of of doing this is by factorization. As its name suggests, this method consists of finding a common factor in two or more terms. For example, in the following expression

$$
7 x+9 x-5 x
$$

the three terms share the common factor x. Therefore, we can rewrite this expression as:

$$
7 x+9 x-5 x=(7+9-5) x=11 x .
$$

In general, we will have the following identities:

$$
\begin{gathered}
(a+b)^{2}=a^{2}+2 a b+b^{2} \\
(a-b)^{2}=a^{2}-2 a b+b^{2} \\
(a+b)(a-b)=a^{2}-b^{2} \\
a b+a c=a(b+c)
\end{gathered}
$$

Homework

1. Factor:
a. $6 a+12=$
b. $m n+n=$
c. $5 x y-15 x=$
d. $4 a x-8 a x^{2}+12 a x^{3}=$
2. Factor using the factorization identities we learned above:
a. $9-x^{2}=$
b. $x^{6}-4=$
c. $9-6 x+x^{2}=$
d. $a^{3}-2 a^{2} x+a x^{2}=$
3. Show that the left hand side (LHS) $=$ right hand side (RHS):
a. $(m-n)(a+b)+m-n=a(m-n)+(b+1)(m-n)$
b. $x^{2}(x+1)-x-1=x(x+1)^{2}-(x+1)^{2}$
c. $2 x(x+b)+a(x+b)=(2 x+a) x+(2 x+a) b$
d. $(a+b)^{2}+c(a+b)=(a+b)(a+c)+(a+b) b$
