Classwork 17.

The length of the segment [AC] is $\sqrt{2}$ (from Pythagorean theorem). The area of the square ACMN is twice the area of the square $A B C D$. Let assume that the $\sqrt{2}$ is a rational number, so it can be represented as a ratio $\frac{p}{q}$, where $\frac{p}{q}$ is nonreducible fraction.

$$
\left(\frac{p}{q}\right)^{2}=2=\frac{p^{2}}{q^{2}}
$$

Or $p^{2}=2 q^{2}$, therefore p^{2} is an even number, and p itself is an even number, and can be represented as

$$
p=2 p_{1}
$$

Consequently

$$
\begin{gathered}
p^{2}=\left(2 p_{1}\right)^{2}=4 p_{1}^{2}=2 q^{2} \\
2 p_{1}^{2}=q^{2}
\end{gathered}
$$

q also is an even number and can be written as $q=2 q_{1}$.

$$
\frac{p}{q}=\frac{2 p_{1}}{2 q_{1}}
$$

therefore fraction $\frac{p}{q}$ can be reduced, which is contradict the assumption. We proved that the $\sqrt{2}$ isn't a rational number by contradiction.

Prove that the value of the following expressions is a rational number.

1. $(\sqrt{2}-1)(\sqrt{2}+1)$
2. $(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})$
3. $(\sqrt{2}+1)^{2}+(\sqrt{2}-1)^{2}$
4. $(\sqrt{7}-1)^{2}+(\sqrt{7}+1)^{2}$
5. $(\sqrt{7}-2)^{2}+4 \sqrt{7}$

Last week we did a litle review of a geomery conveptes as point, ray, straight line, angle, straght angle and right angle.
Area of a triangle :

$$
S=\frac{1}{2} a h .
$$

Area of the triangle.

$$
S_{\Delta}=\frac{1}{2} h \times a
$$

The area of a triangle is equal to half of the product of its height and the base, corresponding to this height.
For the acute triangle it is easy to see.

$$
\begin{gathered}
S_{\square}=h \times a=x \times h+y \times h \\
S_{\triangle A B X}=\frac{1}{2} h \times x \\
S_{\triangle X B C}=\frac{1}{2} h \times y, \quad S_{\triangle A B C} \\
=S_{\triangle A B X}+S_{\triangle X B C} \\
S_{\triangle A B C}=\frac{1}{2} h \times x+\frac{1}{2} h \times y=\frac{1}{2} h(x+y)=\frac{1}{2} h \times a
\end{gathered}
$$

For an obtuse triangle, for one out of the three heights, it is not so obvious.

$$
\begin{gathered}
S_{\triangle X B C}=\frac{1}{2} h \times x, \quad S_{\triangle X B A}=\frac{1}{2} h \times y \\
S_{\triangle A B C}=S_{\triangle X B C}-S_{\triangle X B A}=\frac{1}{2} h \times x-\frac{1}{2} h \times y \\
=\frac{1}{2} h \times(x-y)=\frac{1}{2} h \times a
\end{gathered}
$$

Parallelogramm is a shape which has two pairs of parallele lines:

a and b are sides of the trapezoid, h is a distance between two parallel sides (any pair of parallel sides).
Can you find the area of a parallelogramm?
Trapezoid is a shape quadrilateral with a pair of a parallel side.

Can you find the area of a trapezoid?

