Classwork 16.

Irrational numbers

Rational number is a number which can be represented as a ratio of two integers:

$$
a=\frac{p}{q} ; \quad p \in Z, \text { and } q \in N, \quad(Z=\{ \pm \cdots, \pm 1,0\}, N=\{1,2, \ldots\})
$$

Rational numbers can be represented as infinite periodical decimals (in the case of denominators containing only powers of 2 and 5 the periodical bloc of such decimal is 0).
Numbers, which can't be express as a ratio (fraction) $\frac{p}{q}$ for any integers p and q are irrational numbers. Their decimal expansion is not finite, and not periodical.
Examples:
0.01001000100001000001...
$0.123456789101112131415161718192021 \ldots$
What side the square with the area of $a \mathrm{~m}^{2}$ does have? To solve this problem, we have to find the number, which gives us a as its square. In other words, we have to solve the equation

$$
x^{2}=a
$$

This equation can be solved (has a real number solution) only if a is nonnegative ($(a \geq 0)$ number. It can be seen very easily;

If $x=0, x \cdot x=x^{2}=a=0$,
If $x>0, x \cdot x=x^{2}=a>0$,
If $x<0, x \cdot x=x^{2}=a>0$,
We can see that the square of any real number is a nonnegative number, or there is no such real number that has negative square.

Square root of a (real nonnegative) number a is a number, square of which is equal to a.

There are only 2 square roots from any positive number, they are equal by absolute value, but have opposite signs. The square root from 0 is 0 , there is no any real square root from negative real number.

Examples:

1. Find square roots of $16: 4$ and $(-4), 4^{2}=(-4)^{2}=16$
2. Numbers $\frac{1}{7}$ and $\left(-\frac{1}{7}\right)$ are square roots of $\frac{1}{49}$, because $\frac{1}{7} \cdot \frac{1}{7}=\left(-\frac{1}{7}\right) \cdot\left(-\frac{1}{7}\right)=\frac{1}{49}$
3. Numbers $\frac{5}{3}$ and $\left(-\frac{5}{3}\right)$ are square roots of $\frac{25}{9}$, because $\left(\frac{5}{3}\right)^{2}=\frac{5}{3} \cdot \frac{5}{3}=\left(-\frac{5}{3}\right)^{2}=\left(-\frac{5}{3}\right)$. $\left(-\frac{5}{3}\right)=\frac{25}{9}$

Arithmetic (principal) square root of a (real nonnegative) number a is a nonnegative number, sauare of which is eaual to a.

There is a special sign for the arithmetic square root of a number $a: \sqrt{a}$.
Examples;

1. $\sqrt{25}=5$, it means that arithmetic square root of 25 is 5 , as a nonnegative number, square of which is 25 . Square roots of 25 are 5 and (-5), or $\pm \sqrt{25}= \pm 5$
2. Square roots of 121 are 11 and (-11), or $\pm \sqrt{121}= \pm 11$
3. Square roots of 2 are $\pm \sqrt{2}$.
4. A few more:

$$
\begin{array}{lllll}
\sqrt{0}=0 ; & \sqrt{1}=1 ; & \sqrt{4}=2 ; & \sqrt{9}=3 ; & \sqrt{16}=4 ; \\
\sqrt{25}=5 ; & \sqrt{\frac{1}{64}}=\frac{1}{8} ; & \sqrt{\frac{36}{25}}=\frac{6}{5} &
\end{array}
$$

Base on the definition of arithmetic square root we can right

$$
(\sqrt{a})^{2}=a
$$

To keep our system of exponent properties consistent let's try to substitute $\sqrt{a}=a^{k}$. Therefore,

$$
(\sqrt{a})^{2}=\left(a^{k}\right)^{2}=a^{1}
$$

But we know that

$$
\left(a^{k}\right)^{2}=a^{2 k}=a^{1} \quad \Rightarrow \quad 2 k=1, \quad k=\frac{1}{2}
$$

To solve equation $x^{2}=23$ we have to find two sq. root of 23. $x= \pm \sqrt{23}$. 23 is not a perfect square as $4,9,16,25,36 \ldots$

The length of the segment [AC] is $\sqrt{2}$ (from Pythagorean theorem). The area of the square ACMN is twice the area of the square ABCD . Let assume that the $\sqrt{2}$ is a rational number, so it can be represented as a ratio $\frac{p}{q}$, where $\frac{p}{q}$ is nonreducible fraction.

$$
\left(\frac{p}{q}\right)^{2}=2=\frac{p^{2}}{q^{2}}
$$

Or $p^{2}=2 q^{2}$, therefore p^{2} is an even number, and p itself is an even number, and can be represented as $p=2 p_{1}$., consequently
$p^{2}=\left(2 p_{1}\right)^{2}=4 p_{1}{ }^{2}=2 q^{2}$
$2 p_{1}{ }^{2}=q^{2} \Rightarrow q$ also is an even number and can be written as $q=2 q_{1}$.
$\frac{p}{q}=\frac{2 p_{1}}{2 q_{1}}$, therefore fraction $\frac{p}{q}$ can be reduced, which is contradict the assumption. We proved that the $\sqrt{2}$ isn't a rational number by contradiction.
Prove that the value of the following expressions is a rational number.

1. $(\sqrt{2}-1)(\sqrt{2}+1)$
2. $(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})$
3. $(\sqrt{2}+1)^{2}+(\sqrt{2}-1)^{2}$
4. $(\sqrt{7}-1)^{2}+(\sqrt{7}+1)^{2}$
5. $(\sqrt{7}-2)^{2}+4 \sqrt{7}$

Pyphagorian theorem.

4 identical right triangles are arranged as shown on the picture. He area of the big square is $S=$ $(a+b) \cdot(a+b)=(a+b)^{2}$, the are of the small square is $s=c^{2}$. The area of 4 triangles is 4 .
$\frac{1}{2} a b=2 a b$. But also cab be represented as $S-s=2 a b$ $2 a b=(a+b) \cdot(a+b)-c^{2}=a^{2}+2 a b+b^{2}-c^{2}$

$$
\Rightarrow \quad a^{2}+b^{2}=c^{2}
$$

