MATH 5: HOMEWORK 24 GEOMETRY 4.

Warning: in this homework, more than ever, you will need results of previous exercises when doing the next one. So when doing, say, exercise 2 , see if you can make use of exercise 1.

1. Let $A B C D$ be a quadrilateral such tath $A B=C D, A B \| C D$. Show that then $A B C D$ is a parallelogram. [Hint: show that tirangles $\triangle A B D, \triangle C D B$ are congruent.]
2. Let $A B C D$ be a parallelogram, and let M, N be midpoints of sides $A B, C D$. Show that then $A M N D$ is a parallelogram, and deduce from this that $M N \| A D, M N=A D$.
3. (a) Show that if in a quadrilateral $A B C D$ diagonals bisect each other (i.e., intersection point is hte midpoint of each of the diagonals), then $A B C D$ is a parallelogram. [Hint: find some congruent triangles in the figure.]
(b) Show that if in a quadrilateral $A B C D$ diagonals bisect each other and are perpendicular, then it is a rhombus.
4. To check whether a piece of paper is a square, John folds it along a diagonal. If the corners match, he decides it is a square. Is he right? What if he folds along both diagonals?
5. Can you cut a trapezoid into pieces from which you can construct a rectangle?
*6 Let $A B D$ be a triangle, and M, N-midpoints of sides $A B, B D$. Show that then $M N \| A D$, $M N=\frac{1}{2} A D$. [Hint: think of the triangle as a trapezoid in which the top base is so small it becomes a single point. Try to see if the proof given above for trapezoids will work for a triangle, too.]
6. Find all lenghts, angles, and area in the figure shown to the right.

7. Suppose you have a large supply of tiles, all of the same size and shape - namely, a parallelogram. Can you tile a plane with these tiles? Can you find different ways of doing this? What if instead of a parallelograms you have trapezoids?
