MATH 5: HANDOUT 24
 GEOMETRY 4.

Special quadrilaterals: Parallelogram, Rhombus, Trapezoid

Recall that a parallelogram is a quadrilateral in which opposite sides are parallel. Here are some of the properties of parallelograms; all of them were either proved before or will be proved in this homework.

1. In a parallelogram, opposite sides are equal. Conversely, if $A B C D$ is a quadrilateral in which opposite sides are equal: $A B=C D, B C=A D$, then $A B C D$ is a parallelogram.
2. In a parallelogram, diagonals bisect each other, i.e. the intersection point of two diagonals is the midpoint of each of them. Conversely, if $A B C D$ is a quadrilateral in which diagonals bisect each other, then $A B C D$ is a parallelogram.
A rhombus is a quadrilateral in which all four sides are equal. By property 1 above, any rhombus is also a parallelogram, so all the above properties hold. In addition, in a rhombus diagonals are perpendicular (shown in previous homework).

A trapezoid is a quadrilateral in which one pair of opposite sides are parallel: $A D \| B C$. These parallel sides are usually called bases.

A trapezoid does not have as many useful properties as a parallelogram, but here is one useful thing.

Theorem. Let $A B C D$ be a trapezoid with bases $A D, B C$. Let M be midpoint of side $A B$ and N - midpoint of side $C D$. Then $M N \| A D$ and $M N=\frac{A D+B C}{2}$.

Proof. In homework exercise 2, you will show that it works for a parallelogram. Let us use it.
Draw a line $C^{\prime} D^{\prime}$ through point N parallel to $A B$. Then the two shaded triangles are congruent by ASA, so N is also the midpoint of $C^{\prime} D^{\prime}$. On the other hand, $A B C^{\prime} D^{\prime}$ is a parallelogram, so $M N$ is the line connecting midpoints of two sides of a parallelogram. Thus, by exercise $2, M N \| A D$, $M N=A D^{\prime}=B C^{\prime}$.
Denote $x=C C^{\prime}=B B^{\prime}$. Then $B C^{\prime}=B C+x, A D^{\prime}=A D-X$. Since $A B C^{\prime} D^{\prime}$ is a parallelogram, $B C^{\prime}=A D^{\prime}$, so $B C+x=A D-x$. Solving for ${ }^{A}$
 x, we get $x=\frac{A D-B C}{2}$, so $M N=B C^{\prime}+B C+x=\frac{A D+B C}{2}$.

Area

Recall that the area of a rectangle is (length) \times width, and area of a right triangle with legs a, b is $\frac{1}{2} a b$ (because putting together two such triangles we get a rectangle with sides a, b). Here are more formulas:

Area of a triangle with base b and height h is $\frac{1}{2} b h$
Area of a parallelogram with base b and height h is $b h$
Area of a trapezoid with bases a, b and height h is $h \times \frac{a+b}{2}$

