MATH 5: HOMEWORK 22 GEOMETRY 2.

1. Let $C D$ be a continuation of side $A C$ in a triangle $\triangle A B C$. Show that then $\angle B C D=\angle A+\angle B$ (such an angle is sometimes called an exterior angle of the triangle. [Hint: sum of the angles in a triangle is equal to 180°.]
2. An n-gon is called regular if all sides are equal and all angles are also equal.
(a) How large is each angle in a regular hexagon (6-gon)?
(b) Show that in a regular hexagon, opposite sides are parallel. (This is the reason why this shape is used for nuts and bolts).
[Hint: show that each of the angles labeled by letter a in the figure is equal to 60°, and then use theorem
 about alternate interior angles.]
3. Let $A B C$ be a triangle in which two sides are equal: $A B=$ $B C$ (such a triangle is called isosceles). Let M be the midpoint of the side $A C$, i.e. $A M=M C$.
(a) Show that triangles $\triangle A B M$ and $\triangle C B M$ are congruent.
(b) Show that angles $\angle A$ and $\angle C$ are equal
(c) Show that $\angle A M B=90^{\circ}$ (hint: $\angle A M B=\angle C M B$).

4. Let $A B C D$ be a quadrilateral such that $A B=B C=C D=$ $A D$ (such a quadilateral is called rombus). Let M be the intersection point of $A C$ and $B D$.
(a) Show that $\triangle A B C \cong \triangle A D C$
(b) Show that $\triangle A M B \cong \triangle A M D$
(c) Show that the diagonals are perpendicular and that the point M is the midpoint of each of the diagonals. [Hint: after doing each part, mark on the figure all the information you have found - which angles are equal, which line segments are equal, etc: you may need this information for the following parts.]

