MATH 5: HANDOUT 18 CHOOSINGS AND PERMUTATIONS.

Choosing with repetitions

Problem: how many 3-letter combinations can be formed using 26 letters of Latin alphabet?
Answer: there are 26 possibilities for the first letter, 26 for the second, and so on - so according to the product rule, there are $(26)^{3}$ possible combinations.

The same method of counting can be applied in more general situation: suppose we need to choose k items from a collection of n so that

- Order matters: choosing A, then B is different from choosing B, then A.
- Repetitions are allowed: same item can be used more than once (e.g., same letter may appear several times in a combination).
Then there are n^{k} ways to do it.

Choosing without repetitions

Problem: how many 3-letter combinations can be formed using 26 letters of Latin alphabet if no letter can be used more than once?

Answer: there are 26 possibilities for the first letter; after we have chosen the first letter, it leaves only 25 possibilities for the second letter; after choosing the second, we only have 24 possibilities left for the third. So the answer is $26 \times 25 \times 24$

The same method of counting can be applied in more general situation: suppose we need to choose k items from a collection of n so that

- Order matters: choosing A, then B is different from choosing B, then A.
- Repetitions are not allowed: no item can be used more than once.

Then there are $n(n-1) \ldots(n-k+1)$ ways of doing it (the product has k factors). This number is usually denoted

$$
{ }_{k} P_{n}=n(n-1) \ldots(n-k+1)
$$

FACTORIALS AND PERMUTATIONS

Recall from last time: if we are choosing k objects from a collection of n so that a)order matters and b)no repetitions allowed, then there are

$$
{ }_{k} P_{n}=n(n-1) \ldots \quad(k \text { factors })
$$

ways to do it.
In particular, if we take $k=n$, it means that we are selecting one by one all n objects - so this gives the number of possible ways to put n objects in some order:

$$
n!={ }_{n} P_{n}=n(n-1) \cdots \cdot 2 \cdot 1
$$

(reads n factorial).
For example: there are 52 ! ways to mix the cards in the usual card deck.
Note that the number $n!$ grow very fast: $2!=2,3!=6,4!=2 \cdot 3 \cdot 4=24,5!=120,6!=620$
Using factorials, we can give a simpler formula for ${ }_{k} P_{n}$:

$$
{ }_{k} P_{n}=\frac{n!}{(n-k)!}
$$

For example:

$$
{ }_{4} P_{6}=6 \cdot 5 \cdot 4 \cdot 3=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1}=\frac{6!}{2!}
$$

