MATH 5. Handout 25
 REVIEW

Binary numbers. Powers of 2:

\mathbf{n}	0	1	2	3	4	5	6	7	8	9
$\mathbf{2}^{\mathbf{n}}$	1	2	4	8	16	32	64	128	256	516

Numbers in decimal notation can be presented like this

$$
351=1 \cdot 2^{8}+0 \cdot 2^{7}+1 \cdot 2^{6}+0 \cdot 2^{5}+1 \cdot 2^{4}+1 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=101011111 \mathrm{~b}
$$

Square root

Square root of a (denoted $\sqrt{a})$ is a number whose square is equal to a. For example: square root of 25 is 5 , because $5^{2}=25$.

$$
\begin{aligned}
& \sqrt{a^{2}}=|a| \\
& \sqrt{8}=\sqrt{4 \cdot 2}=\sqrt{4} \cdot \sqrt{2}=\sqrt{2^{2}} \cdot \sqrt{8}=2 \cdot \sqrt{2} \\
& \sqrt{a^{8}}=\sqrt{\left(a^{4}\right)^{2}}=a^{4}
\end{aligned}
$$

Pythagorean Theorem: In a right triangle with legs a, b and hypotenuse c :

$$
a^{2}+b^{2}=c^{2} \quad \text { or } \quad c=\sqrt{a^{2}+b^{2}}
$$

Exponents Properties

1. $a^{0}=1$
2. $a^{m} \cdot a^{n}=a^{m+n}$
3. $a^{m} \div a^{n}=\frac{a^{m}}{a^{n}}=a^{m-n}$
4. $(a b)^{n}=a^{n} \cdot b^{n}$
5. $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
6. $a^{n}=\frac{1}{a^{-n}}$
7. $\left(a^{m}\right)^{n}=a^{m \cdot n}$

Homework

1. Binary numbers:
a) Write as binaries: $35,11,40$
b) Write as decimals: 101010, 11100011
2. Solve equations:
a) $\frac{3}{4}(x+8)=10$
b) $\frac{1}{2}(x+1)=x-3$
c) $\frac{1}{2} x+\frac{1}{3} x=x-\frac{1}{12}$
3. A piece of cable $8-\mathrm{cm}$ long weighs 48 grams. What will a $10-\mathrm{cm}$ length of the same cable weigh?
4. The standard card deck has 4 suits (hearts, diamonds, spades, and clubs); each suit has 13 different card values: 2 through 10 , jack, queen, king, and ace. If you randomly draw one card, what is the probability of getting
(a) The king or queen of spades
(b) A non-face card (number 2 through 10)
(c) Anything but the queen of clubs
5. Open parenthesis and simplify:
a) $3(a-5)-2(2 a-9)=$
b) $12 x-3(4 x+2)=$
c) $a(a+b)+b(a+1)=$
d) $3 a(b+a c)-3 a^{2} c-2 a b=$
6. Simplify:
a) $\left(\frac{2 a^{2} b^{5}}{3 a^{3} b^{3}}\right)^{3}=$
b) $\left(5 z^{2} \cdot 2 z^{3} \cdot z\right)^{2}=$
c) $\frac{(-y b)^{6}}{(y b)^{2}}=$
7. Solve equations:
a) $\frac{3}{8} x=\frac{18}{3}$
b) $|2 x-5|=1$
c) $\frac{x-2}{x-1}-4=-2$
