MATH 5: HANDOUT 22
 GEOMETRY 3.

Congruence tests for triangles

Recall that by definition, to check that two triangles are congruent, we need to check that corresponding angles are equal and corresponding sides are equal; thus, we need to check 6 equalities. However, it turns out that in fact, we can do with fewer checks.

Congruence test 1 (SSS Side-Side-Side rule). If $A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}$ and $A C=A^{\prime} C^{\prime}$ then $\triangle A B C \cong$ $\triangle A^{\prime} B^{\prime} C^{\prime}$.

Congruence test 2 (ASA Angle-Side-Angle rule). If $\angle A=\angle A^{\prime}, \angle B=\angle B^{\prime}$ and $A B=A^{\prime} B^{\prime}$, then $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$.

This rule is commonly referred to as ASA rule.
Congruence test 3 (SAS Side-Angle-Side rule). If $A B=A^{\prime} B^{\prime}, A C=A^{\prime} C^{\prime}$ and $\angle A=\angle A^{\prime}$, then $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$.

These rules - and congruent triangles in general - are very useful for proving various properties of geometric figures. As an illustration, we prove the following useful result.

Theorem. Let $A B C D$ be a parallelogram. Then $A B=C D, B C=A D$, i.e. the opposite sides are equal.
Proof. Let us draw diagonal $B D$. Then the two angles labeled by letter a in the figure are equal as alternate interior angles (because $A B \| D C)$; also, two angles labeled by letter b are also equal. Thus, triangles $\triangle A B D$ and $\triangle C D B$ have a common side $B D$ and the two angles adjacent to it are the same. Thus, by ASA, these two triangles are congruent, so $A D=B C, A B=C D$.

Homework

1. Solve the equation $3 x+3=\frac{1}{2} x+13$
2. (a) Prove that a diagonal of a rectangle cuts it into two congruent triangles.
(b) Explain why in a rectangle, opposite sides are equal.
3. Let $A B C D$ be a parallelogram, and let M be the intersection point of the diagonals.
(a) Prove that triangles $\triangle A M B$ and $\triangle C M D$ are congruent. [Hint: use the parallelogram property proved in class, that in the parallelogram opposite sides are equal, and ASA.]
(b) Prove that $A M=C M$, i.e., M is the midpoint of diagonal $A C$.

4. Let $A B C D$ be a quadrilateral such that sides $A B$ and $C D$ are parallel and equal (but we do not know whether sides $B C$ and $A D$ are parallel).
(a) Prove that triangles $\triangle A M B$ and $\triangle C M D$ are congruent.
(b) Prove that sides $B C$ and $A D$ are indeed parallel and therefore $A B C D$ is a parallelogram.

5. We know that in a rhombus $A B C D$ all sides are equal: $A B=$ $B C=C D=A D$. Let M be the intersection point of $A C$ and $B D$.
(a) Prove that $\triangle A B C \cong \triangle A D C$
(b) Prove that $\triangle A M B \cong \triangle A M D$
(c) Prove that the diagonals $A C$ and $B D$ are perpendicular
(d) Prove that the point M is the midpoint of each of the diagonals $A C$ and $B D$.
[Hint: after doing each part, mark on the figure all the information you have found - which angles are equal, which line segments are equal, etc: you may need this information for
 the following parts.]
6. The following method explains how one can find the midpoint of a segment $A B$ using a ruler and compass:

- Choose radius r (it should be large enough) and draw circles of radius r with centers at A and B.
- Denote the intersection points of these circles by P and Q. Draw the line $P Q$.
- Let M be the intersection point of lines $P Q$ and $A B$. Then M is the midpoint of $A B$.

Justify this method, i.e., prove that so constructed point will indeed be the midpoint of $A B$? You can use the defining property of the circle: for a circle of radius r, the distance from any point on this circle to the center is exactly r.[Hint: $A P B Q$ is a rhombus, so we can use the knowledge about the rhombus from the previous problem.]
7. The following method explains how one can construct a perpendicular from a point P to line l using a ruler and compass:

- Choose radius r (it should be large enough) and draw circle of radius r with center at P.
- Let A, B be the intersection points of this circle with l. Find the midpoint M of $A B$ (using the method of the previous problem). Then $M P$ is perpendicular to l.
Justify this method, i.e., explain why so constructed MP will indeed
 be perpendicular to l ?

