Math 4b. Classwork 9.

About variables.

When we need to write a mathematical expression, but we don't know the exact numbers to use, we use variables. It can be any symbol, for example $\hat{\sim}$ or but it is very convenient to use letters. For example, if the number of books on the first shelf is n and the number of books on the second shelf is m, the total number of books on both shelves is $n+m$. We can do all the usual arithmetic operations on variables, but the exact answer can only be obtained when values are passed into variables.

Let's have a look at expressions for the following problems:

- 3 packages of cookies cost a dollars. How much do 5 such packages cost?

If 3 packages of cookies cost a dollars, one pack costs

$$
1 \text { pack }=\frac{a}{3}=a: 3
$$

Five such packs will be

$$
5 \cdot a: 3=\frac{5 a}{3}=\frac{5}{3} a
$$

- 5 bottles of juice cost b dollars. How many bottles can one buy with c dollars? Similarly to the problem above, if 5 bottles cost b dollars, one bottle will cost

$$
\frac{b}{5} \text { dollars }
$$

If I have only c dollars, I can buy the number of bottles equal to my total money divided by the price of one bottle:

$$
c: \frac{b}{5}=c \cdot \frac{5}{b}=\frac{5 c}{b}
$$

If I have only $\$ 30$ and 5 bottles cost 10 dollars I can buy:

$$
30: \frac{10}{5}=30 \cdot \frac{5}{10}=30 \cdot \frac{1}{2}=15 \text { bottles }
$$

Positive and negative numbers.

If positive represents above sea level, then negative represents below level. If positive represents a deposit, negative represents a withdrawal. If positive represents movement to the right, negative represents movement to the left.

Numbers to the left of zero on the number line are called negative. They are less than 0 , and we write the "-" in front of them. The numbers to the right from zero are positive.

Addition. Substruction.

If we add a positive number to any number, we move to the right along the number line. For example:

$$
1+3=4
$$

If we add a negative number to any number, we move to the left along the number line. So, adding (-5) is moving 5 units to the left on the number line - which is the same as subtracting 5 . For example:

Opposites.

Pairs of numbers -1 and $1,-2$ and $2,-3$ and 3 etc. are called the opposites. They lie at the same distance from zero on the number line, but in the opposite directions. For any number A (whether positive or negative), the number denoted by $-\mathbf{A}$ is the opposite of \mathbf{A}. For example, $-(-3)$ is the opposite of (-3), which is equal to 3 . So

What about subtracting a negative number?
For example:

$$
1-(-2)=?
$$

We know that $-(-2)$ is the opposite of negative 2 , which is equal to 2 . So,

$$
1-(-2)=1+2=3
$$

Homework.

1. Alex is m years old. Robert is n years older than Alex.
a) How old will the boys be in 3 years?
b) How many times Robert will be older than Alex in 3 years?

Solve the problem for $m=2, n=10$.
2. Julia had 20 cards. She gave a cards to her sister. How many cards she has now? Can a be any number?
3. Write the expressions for the shaded areas below (all angles are right angles):

4. Fill up the table:

a	7	-4			5		0	
$-a$			0	-1		8		-3

5. Compare:

$$
\begin{array}{cccccc}
-4 & 4 & 6 & -4 & \frac{2}{3} & -\frac{3}{2} \\
-4 & -2 & -4 & 0 & -\frac{2}{3} & -1
\end{array}
$$

6. Compute:

$$
\begin{array}{lll}
3+(-2)= & 3+(2)= & -3-(-2)= \\
3-(2)= & -3+(-2)= & -3+(2)= \\
3-(-2)= & -3-(2)= & -3+(3)=
\end{array}
$$

7. Fill the empty spaces in the table:

\boldsymbol{c}	\boldsymbol{b}	$\boldsymbol{b} \cdot \boldsymbol{c}$
$\frac{3}{8}$	$\frac{3}{4}$	
$\frac{3}{4}$		$\frac{9}{21}$
	$\frac{2}{3}$	$\frac{16}{21}$

8. Write without parenthesis:

Example:
$-(-3)=3 \quad-(+7)=-7$
a. - (11)
b. -(9)
c. $-(-7)$
d. $-(-10)$
e. $-(15)$
f. $-(-20)$
9. Each floor of a residential building has f two-bedroom apartments and g threebedroom apartments. The building has 5 floors. How many apartments are there in the building? Write the expression with variables, then solve the problem for $f=3$ and $g=4$
10. Create your own problems, which can be solved by the following expressions, give some values to the variables, and solve your problems quantitively:
a. $x-y$
b. $c+3 c$
c. $k: 9$

