Math 4b. Classwork 9.

About variables.

When we need to write a mathematical expression, but we don't know the exact

numbers to use, we use variables. It can be any symbol, for example \overleftrightarrow or C, but it is very convenient to use letters. For example, if the number of books on the first shelf is n and the number of books on the second shelf is m, the total number of books on both shelves is n + m. We can do all the usual arithmetic operations on variables, but the exact answer can only be obtained when values are passed into variables.

Let's have a look at expressions for the following problems:

• 3 packages of cookies cost *a* dollars. How much do 5 such packages cost?

If 3 packages of cookies cost a dollars, one pack costs

$$1pack = \frac{a}{3} = a:3$$

Five such packs will be

$$5 \cdot a: 3 = \frac{5a}{3} = \frac{5}{3}a$$

• 5 bottles of juice cost b dollars. How many bottles can one buy with c dollars? Similarly to the problem above, if 5 bottles cost b dollars, one bottle will cost

$$\frac{b}{5}$$
 dollars

If I have only c dollars, I can buy the number of bottles equal to my total money divided by the price of one bottle:

$$c:\frac{b}{5} = c \cdot \frac{5}{b} = \frac{5c}{b}$$

If I have only \$30 and 5 bottles cost 10 dollars I can buy:

$$30:\frac{10}{5} = 30 \cdot \frac{5}{10} = 30 \cdot \frac{1}{2} = 15$$
 bottles

Positive and negative numbers.

If positive represents above sea level, then negative represents below level. If positive represents a deposit, negative represents a withdrawal. If positive represents movement to the right, negative represents movement to the left.

Numbers to the left of zero on the number line are called **negative**. They are less than 0, and we write the "–" in front of them. The numbers to the right from zero are positive.

Addition. Substruction.

If we add a positive number to any number, we move to the right along the number line. For example:

If we add a negative number to any number, we move to the left along the number line. So, adding (-5) is moving 5 units to the left on the number line — which is the same as subtracting 5. For example:

$$1 + (-5) = 1 - 5 = -4$$

Opposites.

Pairs of numbers -1 and 1, -2 and 2, -3 and 3 etc. are called the opposites. They lie at the same distance from zero on the number line, but in the opposite directions. For any number A (whether positive or negative), the number denoted by -A is the **opposite of A**. For example, -(-3) is the opposite of (-3), which is equal to 3. So

What about subtracting a negative number?

For example:

$$1 - (-2) = ?$$

We know that -(-2) is the opposite of negative 2, which is equal to 2. So,

$$1 - (-2) = 1 + 2 = 3$$

Homework.

- Alex is m years old. Robert is n years older than Alex.
 a) How old will the boys be in 3 years?
 b) How many times Robert will be older than Alex in 3 years?
 Solve the problem for m = 2, n = 10.
- 2. Julia had 20 cards. She gave *a* cards to her sister. How many cards she has now? Can *a* be any number?
- 3. Write the expressions for the shaded areas below (all angles are right angles):

а

С

b

а	7	-4			5		0	
-a			0	-1		8		-3

5. Compare:

-4	4	6 - 4	$\frac{2}{3}$	$-\frac{3}{2}$
-4	- 2	-4 0	$-\frac{2}{3}$	- 1

6. Compute:

3 + (-2) =	3 + (2) =	-3 - (-2) =
3 - (2) =	-3 + (-2) =	-3 + (2) =
3 - (-2) =	-3 - (2) =	-3 + (3) =

7. Fill the empty spaces in the table:

С	b	b · c
$\frac{3}{8}$	$\frac{3}{4}$	
$\frac{3}{4}$		$\frac{9}{21}$
	$\frac{2}{3}$	$\frac{16}{21}$

8. Write without parenthesis:

Example:

-(-3) = 3	-(+7) = -7	
a. – (11)	<i>b</i> .–(9)	<i>c</i> . − (−7)
<i>d</i> . – (–10)	<i>e</i> (15)	f (-20)

- 9. Each floor of a residential building has f two-bedroom apartments and g threebedroom apartments. The building has 5 floors. How many apartments are there in the building? Write the expression with variables, then solve the problem for f = 3and g = 4
- 10. Create your own problems, which can be solved by the following expressions, give some values to the variables, and solve your problems quantitively:

a. x - y b. c + 3c c. k:9