©
TIME your work: Start: \qquad Finish: \qquad Total time spent: \qquad
Calculate: Please look carefully at the signs and try to figure out the easiest way to 1 do it!
a) $2,501+4,280+499=$
b) $4,302+870-301=$
c) $2,492 \div 7=$
d) $325 \times 42=$

2 Convert the following measurements.
$3 \mathrm{~m} 5 \mathrm{dm} 6 \mathrm{~cm}=$ \qquad cm
$3 \mathrm{~m} 6 \mathrm{~cm}=$ \qquad cm
$325 \mathrm{~cm}=$ \qquad m \qquad dm \qquad cm
$56 \mathrm{~cm}=$ \qquad dm \qquad cm

Calculate (simplify to the lowest term where possible)
$\frac{23}{50}-\frac{13}{50}=\quad \frac{24}{100}+\frac{6}{100}=\quad \frac{30}{75}-\frac{5}{75}=$

4 On the coordinate plane below, mark the points with the following coordinates and connect them. Color the quadrilateral you get with any color.
A ($0,-2$)
B $(0,4)$
C (7, -2)
D (7, 4)

5 Insert the missing fraction:
a)
$-+\frac{1}{3}=1 \frac{2}{3}$
b) $\frac{1}{3}+$ \qquad $=2 \frac{2}{3}$
c) $\frac{3}{8}+$ \qquad

Write down the mathematical expressions to solve the problems:
a) There are a total of 35 oranges packed in the 5 identical bags.

- How many oranges are in one bag? \qquad
- How many oranges will be in 10 such bags? \qquad
b) There are \boldsymbol{x} oranges packed in 6 identical bags.
- How many oranges are in one bag? \qquad
- How many oranges will be in 7 such bags? \qquad
c) There are $\mathbf{2 0}$ oranges packed in \boldsymbol{y} identical bags.
- How many oranges are in one bag? \qquad
- How many oranges will be in \mathbf{w} such bags? \qquad
d) A snail moves along the cable 9 meters a day.
- How much will it move in 12 days? \qquad
- How many days will it take the snail to move 279 meters?

7 Calculate using the correct order of operations:
a) $9+5 \div(8-3) \times 2=$ \qquad
b) $14+3(4-6 \div 3)=$ \qquad

8 Open parenthesis and simplify where possible:
a) $6(3+a)-(a+b-c)=$ \qquad
b) $3(\mathrm{c}+\mathrm{d})+(\mathrm{d}-\mathrm{c})=$ \qquad
c) $25-5(\mathrm{w}+\mathrm{v}-\mathrm{z}-\mathrm{y})=$

The rectangle below is divided into 4 squares. Find a perimeter and an area of the big rectangle, if the side of the shaded square is 6 cm . Don't forget the units of measurements.

$$
\mathrm{P}=
$$

\qquad

Solve equations, make sure you check your results!
10
$23+\mathbf{y}=34$
$\mathbf{y}=$ \qquad
$\mathbf{x}-63=127$
$\mathrm{x}=$ \qquad
$\mathbf{y}=$ \qquad $\mathbf{x}=$ \qquad
Check: \qquad Check: \qquad
$35+\mathrm{z} \times 5=60$
\qquad
\qquad
\qquad
Check: \qquad

11
a) Use a ruler and draw:

- Draw a straight line $\overleftrightarrow{A D}$.
b) Make a right-angle template.

Using a template check:

- Is angle $\angle \mathrm{CKE}$ obtuse? (YES, NO)
- Is angle $\angle \mathrm{CKB}$ acute? (YES, NO)
c) Use protractor to measure angles:

$$
\angle \mathrm{BKD}=
$$

\qquad
$\angle \mathrm{AKE}=$ \qquad

BONUS PROBLEMS

Do them only if you have time after you finished and checked all the problems on the previous pages!

How can you simplify the following? Remember the orders of operations!

1) $6(3+a)+90 \div 10+a=$
2) $4 \times 7+2(4-a)=$
\qquad
3) $10 \mathrm{a}+2(\mathrm{a}+\mathrm{b})+20(\mathrm{~b}-\mathrm{a})=$ \qquad
4) $35-3(10-\mathrm{z})+(\mathrm{z}-5)=$ \qquad

13*
Find area or side of the rectangle.
$a=6 \mathrm{~cm}$

$\mathrm{A}=42 \mathrm{~cm}^{2} \quad$| $\mathrm{b}=?$ |
| :--- |
| cm |$\quad \mathrm{~b}=7 \mathrm{~m}$

$b=$ \qquad
$\mathrm{b}=? \quad \mathrm{~b}=7 \mathrm{~m}$,
cm

$$
\mathrm{a}=9 \mathrm{~m}
$$

$\mathrm{A}=? \mathrm{~m}^{2}$
$A=$ \qquad

Find the perimeter and the area of the following figure, if you know some of the sides:

$\mathrm{P}=$ \qquad
$A=$ \qquad

