Math 3 Homework 11

1 A triangle is a closed shape with three straight sides that meet at three vertices. It is a polygon. Review the classification of the triangles:

Types of triangles:

By sides:
a) Scalene triangle - no equal angles and no equal sides
b) Isosceles triangle - 2 equal sides and 2 equal angles
c) Equilateral triangle - 3 equal sides and 3 equal angles

By angles: \quad a) Right triangle- has a right angle
b) Obtuse triangle - has an angle that larger than a right angle
c) Acute triangle - all angles are smaller than a right angle

2 Determine what triangle it is by it's sides and by it's angles (USE THE RIGHT ANGLE TEMPLATE OR PROTRACTOR):

Picture of a triangle	Type of the triangle	

3 Using a ruler and a protractor, draw the following shapes:
a) A shape with 3 line segments that is not a triangle.
b) A right isosceles triangle $\triangle \mathrm{ABC}$
c) an obtuse isosceles triangle $\triangle \mathrm{PQR}$

4
Compare expressions using <, >, =
$5 \times 6-5 _5 \times 5+5$

$$
7 \times 6+7 \ldots 6 \times 7+6
$$

$48+20$ \qquad $4 \times 5+50$
$24+32$ \qquad $(32-24) \times 7$

While helping their mother to unload a dishwasher, Victoria put 5 plates on each of 3 shelves of the kitchen cabinet and Julia put 4 plates on the each of 3 shelves. How many plates did both of them put in the kitchen cabinet?
\qquad
\qquad

6
Calculate:(write in the vertical form) (USE THE TUTORIAL FROM THE CLASSWORK11)
a) $18 \times 3=$
b) $77 \times 5=$
c) $64 \times 7=$

Find the greatest missing number so that an inequality will still be correct.
$6 \times$ \qquad <45
\qquad $\times 9<32$
$7 \times$ \qquad <40-5
$27+8>6 \times$ \qquad
$8 \times$ \qquad $<20+27$

8
Find the missing numbers to make an equality correct:
$15 \times 2=5 \times$ \qquad $12 \times \ldots=$ \qquad $\times 24$
$14 \times 4=8 \times$ \qquad
$15 \times 4=10 \times$ \qquad $25 \times$ \qquad $=10 \times 10$
$25 \times 3=5 \times$ \qquad

9 Find ONLY the last digit of the product: 45321×423 \qquad 87325×938162 \qquad 93824×156832 \qquad 73815×38915 \qquad 6783×982713 \qquad
\qquad

A school has planted 12 trees along one side of the road from one end to the other. One tree was planted every 6 meters. How long is the road?

11 Solve the problems:
a) There are a apples in a box. Each box of apples costs $\$ 5$.

What is the total price of 5 boxes? \qquad
How many apples are in 5 boxes? \qquad
b) James's mother bought 3 dresses. Each dress costs $\$ c$.

How much money did she spend for 3 dresses? \qquad
How much money she would spend for n dresses? \qquad
c) Tom's dad bought 2 watermelons and 6 times as many apples. Each watermelon costs $\$ 4$ and each apple costs $\$ 2$.
If he had a $\$ 50$ bill, how much money did he have left after his purchase?
\qquad
\qquad
d) Kate wants to give candies to all her friends who come to the party.

She wants to put 5 candies in each bag. Each child gets two bags of candies.
How many candies will she need for 10 guests? \qquad
How many bags will she need for 10 guests? \qquad

12 Open parentheses and simplify the expressions:
$300-(a+b)=$ \qquad
$200-(a+2)+(b-100)=$ \qquad
$29-(5+b)=$ \qquad
$30-(5+a)+(a+15)=$ \qquad
$70-(b-a)=$ \qquad
$72-(2-k)-(c-d)=$ \qquad

Determine order of operation in each expression and calculate the values:
\qquad $32-10+6-3=$ \qquad $18+12-(8-6)=$
$32-(10+6)-3=$ \qquad
$18+(12-8)-6=$ \qquad $32-10+(6-3)=$ \qquad

14 Try to trace every line in each diagram without lifting a pencil or tracing the same line twice. Is it possible to do for all of those five diagrams?

15 Write down an expression for each statement:

1) There were m pencils in one box, and there are k pencils in another box. How many pencils are in two boxes together? \qquad
2) There were \boldsymbol{d} pencils in one box, and we took away \boldsymbol{p} pencils from the box. How many pencils are in the box now? \qquad
3) There are f pencils in one box and 5 less pencils in another box. How many pencils are in both boxes? \qquad
4) There were \boldsymbol{n} pencils in one box and \boldsymbol{t} pencils in another box.

We took away \boldsymbol{b} pencils from the second box.
How many pencils are in both boxes now? \qquad

16 Solve equations and check you answers:
a) $(15+45)-x=25$
b) $x-(101-11)=110$

Please complete the multiplication exercise.

1) Put the timer on for three minutes and solve as many as you can!
2) Take a color pencil or pen and complete the rest.
