Math 2 Classwork 10

WARM UP

1 Calculate:

	6	0	7			3			5			7	0		4
-	1	0	8						7						9
	1	0	8			3			9			4	8		9
+	1	1	9		+	2			3						4

Solve equations and check your answers:
a) $14+x=26$
b) $x-18=33$
c) $89-a=71$
\qquad
\qquad
\qquad

Mental math.
$24+56=$
$100-80=$
$43-13=$
$35+15=$
$10+95=$
$60+60=$
$51-22=$
$28-14=$

Homework Review

Find the perimeter of the rectangle $A B C D$ plotted on the drawing. Express the perimeter P (sum of lengths of all sides) in units of length.
Draw another rectangle KLMN next to the ABCD such as:
length of side $K L$ is one unit longer then $A B$ and length of side $L M$ two units bigger than $B C$.
What is the perimeter of the new rectangle KLMN?

Length of side $\overline{A B}=4$ units
Length of side $\overline{B C}=8$ units $\mathrm{P}=$ \qquad
\qquad
$K L=$
$\mathrm{P}=$

New Material I

Making a Right Angle Template.

Fold a sheet of paper in half and then in half again. Using a ruler trace the creases with a pencil.
How many straight lines did you get? How many angles do these lines form?

Note the special symbol in the angle. If we see this box, it is a right angle. The 90° is rarely written in.
All the angles below are right angles. Use your right angle template to check it.

5 Find examples of right angles in your room.
a) Write a name of the rectangle \qquad
Using a ruler measure sides CF and QR \qquad
Using a ruler measure sides CQ and FR \qquad What did you notice?

b) Write a name of the square \qquad
Using a ruler measure sides MN and ST \qquad
Using a ruler measure sides SM and NT \qquad
What did you notice?

Special quadrilaterals:

Rectangle: a quadrilateral in which all four angles are right angles.
Square: a quadrilateral in which all 4 angles are right angles, and all 4 sides are of equal length.

Types of angles:

An acute angle is an angle that is smaller than a right angle.
An obtuse angle is an angle that is larger than a right angle.

7 Use a right angle template to find all acute angles and all obtuse angles. List them:
a) The acute angles \qquad
b) The obtuse angles \qquad

8 Quadrilateral is divided in squares. Find a perimeter of a quadrilateral if one side of the shaded square is 8 cm .
$\mathrm{P}=$ \qquad

Connect exactly four points on the pictures below to make
a) a rectangle
b) a square

REVIEW

Compare if possible, using >, <, or $=$. Cross out everything what cannot be compared. Explain.

$23 \mathrm{~kg} \square 5 \mathrm{~kg}$	$68 \mathrm{~cm} \square 86 \mathrm{~cm}$	$3 \mathrm{dm} \square 16 \mathrm{~cm}$	
18 l			
\square	$\square \mathrm{l}$	$51 \mathrm{dm} \square 57 \mathrm{dm}$	$7 \mathrm{~m} \square 8 \mathrm{~kg}$

11 Compare expressions using $>,<$, or $=$:
$a \quad a+c$
$a+b \quad \square \quad b+a$
$38-b \square 68-b$
$b \quad \square \quad b-5$
$k+26 \square 62+k$
$a-0 \quad \square a+0$
$4 \square \quad d-d$
$54+n \square \quad 54-n$
$c-19 \square c-90$

12 Check if the equality $12-8=3+1$ still holds if
a) We add 7 to the left part and 4 to the right part
b) We add 10 to both parts \qquad
c) We add 5 to the right part \qquad

Check if equality $15-4=5+6$ still holds if
a) We subtract 5 from the right side \qquad
b) We subtract 6 from both sides \qquad
c) We subtract 1 from the left side and add 1 to the right side \qquad

13
Write down the following expressions:
The sum of m and n \qquad
The difference between 34 and x \qquad
The difference between 200 and 48 \qquad

Challenge yourself

There are apples on three plates: 1 apple on the $1^{\text {st }}$ plate, 3 apples on the $2^{\text {nd }}$ plate, and 8 apples on the $3^{\text {rd }}$ plate. Move apples from plate to plate to make the number of apples on each plate the same. Follow the rules:

- In one move, you can take any number of apples from one plate and move them to the other plate.
- The number of apples you can add to any plate should be equal to the number of apples that are already there. In other words, you can only double the number of apples that are already on the receiving plate.
- The total number of moves is unlimited.

